Determining How Much to Charge for a Value-Added Farm Commodity: Shepherd’s Grain Case Study

Herb Hinman, PhD
Farm Management Specialist
Kathleen Painter, PhD
Center for Sustaining Ag & Natural Resources
Washington State University

AAEA Annual Meetings
Portland, OR
July 30, 2007

Shepherd's Grain is grown by a small group of progressive family farmers dedicated to sustainable agriculture. The grains are produced using direct-seed cropping systems and certified by the Food Alliance.
The Food Alliance

- The Food Alliance is working to ensure "Good Food For a Healthy Future" through third party certification of farmers who:
 - Reduce or eliminate pesticides
 - Conserve soil and water
 - Protect and enhance wildlife habitat
 - Provide safe and fair working conditions.

Becoming a “price-maker”

- Desire to de-commodify their product
- What to charge?
 - Cost plus a fair return on their investment
 - Production costs
 - Return on machinery and land investments
 - Return on labor and management
 - Some percentage of profit
Crop Price Calculator

• Tool developed by Herb Hinman for Shepherd’s Grain
• Determines price to charge for one crop for multiple producers
 ▪ Owner/operator
 ▪ Renter
 ▪ Crop/fallow situation

Allocating Crop Prices Across Varied Farmers & Regions

• Farm land values & productivity will vary
 ▪ Wheat/fallow versus annual cropping
• Investment in machinery, other improvements will vary
• Repair costs, replacement costs will vary
• Land ownership varies
Example 1: 100% Land Owner

- Owner desires 5% return on land investment
- Management fee: 5% of total operating expenses
- Profit: 10% of total operating expense
- Retirement fund: $10,000 per year
- Health insurance premiums: $8,000 per year

Machinery Expenses

- Determine value of current investment
- Determine % of total farm machinery use by this crop -- 40% of the equipment used on this crop
- SG wheat crop is 20% of total farmland
- Annual machinery expense for SG wheat: $210,000 * 40% * 20% = $16,800
Machinery Depreciation

- Value of machinery investment attributable to SG is $16,800
- Desired return on investment at 9% is $1512
- Allocated over 200 acres = $7.56/ac/year
- Alternatively, average annual machinery replacement cost could be used as a proxy for annual depreciation allocated to these acres

Machinery Expenses

- Machinery repair, replacement, insurance, taxes, housing
- Total expenses are allocated to the crop based on:
 - % of machinery used for this crop, e.g. 40%
 - % of farm acreage used for this crop, e.g. 20%
 - $43,750 * 40% * 20% = $3500
 - Allocated over 200 acres = $17.50 per acre
Farm Buildings, Tools, Improvements

- Allocate fixed costs over all acreage
- Example: Value of shop: $50,000
 - Desired return on investment (opportunity cost) of 10%
 - $5,000 per year over entire farm
 - Allocate to SG acreage:
 - $5,000 \times 20\% = $1000/year
 - See CPC W03 Excel file

Wheat/Fallow example

- Fallow expenses must be added
- Interest on preceding fallow year is added to wheat production costs
- Wheat/fallow region
 - Lower rainfall
 - Lower yielding, e.g. 52 bu rather than 72 bu per acre
 - See CPC WSF
Calculating Crop Prices Under Leasing Arrangements

• Landlord gets 1/3 of crop
• Landlord pays 1/3 of crop expenses
 ▪ Fertilizer
 ▪ Crop insurance
• Net landlord share out of operator’s share
 ▪ See CPC WSL

Oregon Grown Biodiesel Case Study:
Engaging Consumers, Helping Farmers
Branding to the end consumer

• Returning a $.14 floor price to the grower
• Providing a reasonable margin to all parties involved in the production and distribution
• All economics involved are Oregon based
Branding to a Specific Consumer

- Providing a stable priced, carbon neutral fuel.
- Growing canola on fields fertilized by biosolids
- Crushing that canola into oil and producing biodiesel to fuel the trucks that deliver the biosolids to the farm.
- Supplying raw oil to SeQuential to produce biodiesel for the city fleets.
Selling to OR DOT: Getting Around Interstate Commerce Restrictions

- Contract has preference for proximity of:
 - Feedstock (canola) production to crushing facility
 - Crushing facility to biodiesel production facility
 - Biodiesel production facility to end-users
- OR farmer with crushing facility on his farm can gain an advantage

Biodiesel production

<table>
<thead>
<tr>
<th>Type of oil to use</th>
<th>Volume of oil per batch</th>
<th>Units of Lye</th>
<th>Amount of oil purchased per batch</th>
<th>Amount of Lye purchased per batch</th>
<th>Units of Lye cost</th>
<th>Cost of Lye per gallon</th>
<th>Percent of Methanol to use by volume</th>
<th>Methanol cost per 55 gallon drum</th>
<th>Cost of Methanol per gallon</th>
<th>End cost per gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canola oil</td>
<td>1000 gallons</td>
<td>8.00</td>
<td>1250</td>
<td>100</td>
<td>1.50</td>
<td>$1.59</td>
<td>22.60</td>
<td>0.050</td>
<td>$2.70</td>
<td>$0.450</td>
</tr>
<tr>
<td>Weight of oil per gallon</td>
<td>7.2</td>
<td>Weight of Lye per gallon</td>
<td>1.25</td>
<td>Weight of Lye per batch</td>
<td>10.00</td>
<td>$107.00</td>
<td>22680</td>
<td>0.008</td>
<td>$2.20</td>
<td>$0.440</td>
</tr>
<tr>
<td>Canola value per pound on farm</td>
<td>0.12</td>
<td>Canola value per ton on farm</td>
<td>440</td>
<td>Canola value per ton</td>
<td>440</td>
<td>$440.00</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Weight of Lye per pound on canola</td>
<td>8.89</td>
<td>Weight of Lye per pound</td>
<td>198</td>
<td>Weight of Lye per ton</td>
<td>198</td>
<td>$198.00</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Value of meal per pound of canola</td>
<td>0.0489</td>
<td>Value of meal per pound</td>
<td>23</td>
<td>Value of meal per pound</td>
<td>23</td>
<td>$23.00</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Cost of oil per gallon</td>
<td>1.59075</td>
<td>Cost of oil per gallon</td>
<td>1.59075</td>
<td>Cost of oil per gallon</td>
<td>1.59075</td>
<td>$1.59075</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Capital debt</td>
<td>$425,000</td>
<td>Capital debt</td>
<td>$425,000</td>
<td>Capital debt</td>
<td>$425,000</td>
<td>$425,000</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Interest rate</td>
<td>6.00%</td>
<td>Interest rate</td>
<td>6.00%</td>
<td>Interest rate</td>
<td>6.00%</td>
<td>6.00%</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Number of payments to payoff debt</td>
<td>80</td>
<td>Number of payments to payoff debt</td>
<td>80</td>
<td>Number of payments to payoff debt</td>
<td>80</td>
<td>$80.00</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Principal and interest on note per month</td>
<td>$34,562.19</td>
<td>Principal and interest on note per month</td>
<td>$34,562.19</td>
<td>Principal and interest on note per month</td>
<td>$34,562.19</td>
<td>$34,562.19</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Value of fuel used per year</td>
<td>$0.0000</td>
<td>Value of fuel used per year</td>
<td>$0.0000</td>
<td>Value of fuel used per year</td>
<td>$0.0000</td>
<td>$0.0000</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
<tr>
<td>Payment per gallon of fuel used per year</td>
<td>$0.512</td>
<td>Payment per gallon of fuel used per year</td>
<td>$0.512</td>
<td>Payment per gallon of fuel used per year</td>
<td>$0.512</td>
<td>$0.512</td>
<td>1120</td>
<td>0.012</td>
<td>$2.09</td>
<td>$0.440</td>
</tr>
</tbody>
</table>

Value of meal per pound of canola: $0.0493

Return per acre with biodiesel on the farm: $442.57

Biodiesel plant gross profit at 12 cents purchase price: $220,178
Contact Information:

Herb Hinman hinman@wsu.edu

Kate Painter, PhD
Sustainable Systems Analyst
WSU, CSANR
207A Hulbert Hall
Pullman, WA 99164-6210
509-397-2585
http://cff.wsu.edu
kpainter@wsu.edu