Assessing Student Learning Using a Digital Grading Platform

Andrew Stevens

Graduate Student Teaching Award Winner University of California – Berkeley

Teaching Tips from AAEA Winners AAEA Annual Meeting Boston, MA

August 2, 2016

Student Learning Objectives

What should students learn in this course?

- Articulate skills and dispositions not course content
- Identify measurable behaviors/outcomes not broad platitudes
- Share early and often with students

Examples:

By the end of this course, students should be able to ...

- apply mathematical and graphical techniques to determine how prices are set in a market
- qualitatively interpret quantitative/analytic results
- articulate the benefits and limits of the economic models covered in class for addressing real-world policy questions

Assessment Techniques

- OK: end-of-term student surveys
 - Pros: low time commitment, easily manageable quantity of data
 - Cons: biased self-assessments, lack of baseline, student fatigue
- Good: regular student feedback
 - Pros: student-specific comparisons possible, feedback "normalized"
 - Cons: biased self-assessments, student fatigue, more instructor work
- Better: dedicated instructor analysis
 - Pros: objective analysis of student learning, instructor focused on SLOs
 - Cons: (potentially) massive instructor time commitment, requires fine-tuning
- Best: integrated assessment
 - Pros: students provide assessment data <u>while</u> completing assignments or exams, instructors focused on SLOs throughout the term
 - Cons: planning required, (potentially) time-consuming

Example of Integrated Assessment

- (new) Introductory Data Science course at UC Berkeley
- 400+ students
- Team of instructors and teaching assistants with one primary instructor
- 12 student learning objectives focused on computer science and statistics skills
- Online grading tool: gradescope.com

"Tagging" assignment questions with SLOs

	2: Inve	estigating Poverty	9 points
		2.1: Histogram of incomes for households CODE GRAPHS	1 point
		2.2: Histogram of number of people per household CODE GRAPHS	2 points
		2.3: The ahs_poverty table	2 points
		2.4: The poverty_counts table	1 point
		2.5: Bar chart of poverty rates CODE CALCULATE GRAPHS	1 point
		2.6: Evidence that poverty is related to / caused by location INFERENCE APPROPRIATE	2 points
Anc	drew Steve	ns (UC Berkeley) Assessing Learning Using Digital Grading	August 2, 2016

Assessment Data (example)

Table: Assignments 1-4 (First Half of Semester)

	Assignment 1		Assignment 2		Assignment 3		Assignment 4	
Learning Objective	Points	% Correct						
1. Write programs	8	87	15	89	13	94	14	91
2. Extend a program	8	87	7	92	1	95	-	-
3. Calculate statistics	2	96	14	89	3	91	5	79
4. Identify sources of randomness	6	87	-	-	-	-	-	-
5. Form a null hypothesis	-	-	-	-	-	-	-	-
6. Statistically test a hypothesis	-	-	-	-	-	-	-	-
7. Form correct conclusions	11	84	-	-	2	84	2	88
8. Identify appropriate analyses	9	84	-	-	-	-	2	88
9. Note benefits/limits of computing	-	-	-	-	-	-	1	80
10. Generate graphs	2	83	-	-	-	-	11	82
11. Make predictions	-	-	2	78	-	-	-	-
12. Assess prediction accuracy	-	-	-	-	-	-	-	-

Andrew Stevens stevens@berkeley.edu

Try gradescope.com for free as an instructor: Invite code: **AAEA2016**