Does Risk Aversion Matter for Shallow Loss Crop Insurance?

Thomas Sproul and David Zilberman

Presented at the 2013 AAEA Symposium on Crop Insurance and the Farm Bill: A New Paradigm for U.S. Agricultural Policy

October 8, 2013

Motivation

- New interest in shallow-loss policies in proposed versions of the Farm Bill.
- Proposed ARC policy is deductible-style, relative to coinsurance-style mechanism we had under SURE.
- We ask: do risk management specifics matter when comparing shallow-loss policies?
- Short answer: No. Only expected payments.

Key Findings

- When two shallow-loss policies have the same actuarially fair value...
 - **Differences** in risk premiums are economically insignificant.
 - Farmers will be approximately risk neutral towards the **difference** in residual risks, if they are risk-neutral enough to farm.
- Policymakers can choose among shallow-loss policies only on the basis of expected cost.
 - Equity considerations remain if certain crops or constituencies are favored.

Methodology

- Define simplified, idealized shallow-loss policies.
 - Actual policy specifics do not generalize well.
 - Why deductible vs. coinsurance?
- Econometrically estimate revenue distributions.
 - Variety of crops and counties to address risk vs. productivity tradeoffs.
- Find deductible and coinsurance policies of equal actuarially fair value, and compare risk premiums.
 - Across a number of risk preference specifications.
 - Across the range of buy-up coverage levels.

Comparing Policies

- Comparison of actual policies is difficult
 - Rating differences, coverage options
 - Whole farm vs. single crop
 - SURE's disaster trigger
- For apples-to-apples comparison:
 - Deductible vs. coinsurance, both "free" add-ons
 - Assume underlying buy-up coverage at same level
 - All coverage is revenue insurance, at farm-level
 - Mono-crop environment, no disaster trigger

A Basic Model of Crop Insurance

- Per-Acre Revenues, Y ~ F. Underlying buy-up coverage has guarantee, T_B , and pays: B = max(0, $T_B - Y$). So, $Y_B = Y + B$
- Deductible shallow-loss policy has guarantee, T_D , and pays D = max(0, $T_D - Y_B$)
- Coinsurance shallow-loss policy has guarantee, T_C , and reimbursement rate, c, and pays: $C = max(0, c^*(T_C - Y_B))$
- We constrain T_D , c, T_C , such that E[D] = E[C]

Comparing the CDFs, Deductibles vs. Coinsurance

Taylor Results

• Using familiar Taylor approximations, the certainty equivalent of a gamble is roughly:

$$CE \approx \mu + \frac{\mu''}{\mu'} \cdot \frac{\sigma^2}{2}$$

• As a result, the **difference** in risk premiums between two gambles with equal fair value is:

$$\Delta \pi \approx \frac{u''}{u'} \cdot \frac{\Delta \sigma^2}{2}$$

Taylor Results in Context

Table: Comparing Revenue Variance under Different Scenarios

Crop/ County	Raw Revenue	Buy-up at 75%	Shallow- Loss Coinsurance	Shallow- Loss Deductible	Shallow- Loss ∆Variance
Corn/ DeKalb, IL	\$92.57 K	\$68.87 K	\$60.27 K	\$60.24 K	\$37.47
Cotton/ Hoke, NC	\$133.0 K	\$85.61 K	\$75.78 K	\$75.76 K	\$17.46
Soybeans/ Logan, IL	\$39.34 K	\$29.86 K	\$25.88 K	\$25.86 K	\$17.41
W. Wheat/ Logan, KY	\$61.85 K	\$39.57 K	\$35.84 K	\$35.84 K	\$5.52

Generating Revenue CDF

- USDA/NASS Yield Data, 1975-2011.
- Selected counties and crops.
- Expected and Realized Prices from grain futures.
- Joint distribution of county-level yields and prices estimated for 2012 crop year (Cooper, Delbecq, and Davis, 2012).
 - Kernel density (Gaussian) estimated for yields.
 - Pearson and Spearman rank correlations imposed between county, state and national yields, and prices, via copula.
- Blown-up to farm-level with scaled white noise (Coble and Dismukes, 2008).

Deductible vs. Coinsurance

- Comparing as if free add-on coverage.
- Buy-up coverage levels, $T_B = 55.85\%$ (5% increments)
- Coinsurance parameters chosen according to SURE formula: c = 0.60, $T_c = min(1.15*T_B, 0.90)$.
- Corresponding deductible level chosen so E[C] = E[D].

Risk Specifications

- CARA expected utility: E[U(Y)] = E[- exp(- a*Y)].
 - Test across range of reasonable R_A coefficients (Babcock, Choi, and Feinerman, 1993).
- Results are robust to CRRA specification as well, e.g. U(Y) = log(Y) and scaling up acres.
- Results also robust to Prospect Theory spec:
 - All certainty equivalents are losses
 - Delta risk premium ≤ \$0.03/acre

$$x) = \begin{cases} (x-r)^{\alpha} & x \ge r \\ -\lambda \cdot (r-x)^{\alpha} & x < r \end{cases}$$

where $\alpha = 0.88$, $\lambda = 2.25$

v(z)

Coverage Thresholds

- R_A = 0.001
- Corn/DeKalb, IL
- Mean Revenues = \$974.44, SD = \$304.25

Buy-Up (Percent of Mean)	T _B	T _c	T _D	E[C] = E[D]	Δπ
60.00%	\$584.66	\$672.36	\$642.96	\$16.36	\$0.006
70.00%	\$682.11	\$784.52	\$749.55	\$34.69	\$0.017
80.00%	\$779.55	\$876.99	\$842.72	\$60.80	\$0.028

EV and Delta Risk Premium

- $R_A = 0.001$
- Winter Wheat
- Hyde County, SD
- Mean = \$225.34
- SD = \$74.48

Buy-Up (Percent of Mean)	E[C] = E[D]	Δπ
70.00%	\$10.84	\$0.0007
75.00%	\$14.24	\$0.0009
80.00%	\$17.23	\$0.0007
85.00%	\$18.59	\$0.0001
	(Percent of Mean) 70.00% 75.00% 80.00%	(Percent of Mean) E[C] = E[D] 70.00% \$10.84 75.00% \$14.24 80.00% \$17.23

Max $\Delta \pi$ by Crop/County

County	Сгор	Mean	Std. Dev.	Μах Δπ
DeKalb, IL	Corn	\$974.44	\$304.25	\$0.19
McLean, IL	Corn	\$1,009.80	\$202.87	\$0.17
Howard, NE	Corn	\$905.61	\$449.42	\$0.13
Beadle, SD	Corn	\$619.02	\$319.81	\$0.06
Montgomery, MS	Cotton	\$942.76	\$512.72	\$0.13
Hoke, NC	Cotton	\$850.92	\$364.65	\$0.12
Howard, TX	Cotton	\$373.59	\$373.89	\$0.01
Logan, IL	Soy	\$697.53	\$198.33	\$0.11
Sumner, KS	Soy	\$395.42	\$306.86	\$0.02
Sanilac, MI	Soy	\$570.16	\$256.83	\$0.06
Logan, KY	Winter Wheat	\$470.77	\$248.70	\$0.04
Marion, OH	Winter Wheat	\$449.92	\$165.73	\$0.04
Hyde, SD	Winter Wheat	\$225.34	\$74.48	\$0.03

What Did We Learn?

- Shallow-loss risk premiums are often low; these policies bite near the peak of the distribution.
- **Differences** in shallow-loss risk premiums are even lower for the same reason.
- Findings approximated in theory are confirmed empirically, and robust to a variety of risk preference specifications.
- Shallow-loss policies can and should be compared as if risk-neutral (i.e., by expected cost).

Questions?