

Page | 29 Volume 2, Issue 3, June 2020

'ÏÌÄ ÉÎ 4ÈÅÍ 4ÈÁȤ2 (ÉÌÌÓȡ ! 2ÅÖÉÅ× ÏÆ 2 0ÁÃËÁÇÅÓ ÆÏÒ %ØÐÌÏÒÁÔÏÒÙ
$ÁÔÁ !ÎÁÌÙÓÉÓ

Kota Minegishia and Taro Mienob
a University of Minnesota, Twin Cities, b University of Nebraska-Lincoln

JEL Codes: A2, Q1, Y1
Keywords: Exploratory data analysis, data science, data visualization, R programming

1 Introduction

4ÈÅÒÅȭÓ ÇÏÌÄ ÉÎ ÔÈÅÍ ÔÈÁÒ hills! ɂMark Twain in The American Claimant

A hundred seventy years ago Americans flocked to California in search of gold. The Gold Rush left the

country with a powerful image of massive realignment of capital and labor in search of new economic

opportunities. With each subsequent era came new manifestations of the Gold Rush in the form of booming

industries, invoking a sense of new, ground-breaking opportunities that could lead to permanent structural

change in the existing business environments. Today, businesses are gathering and accumulating an

enormous amount of data: effective goldmines. In this new Gold Rush, the demand for the skills to

understand, explore, and apply data is accelerating. Computer programmers and data scientists are

particularly in high demand, and their tool kit is expanding rapidly. In preparing students for an

increasingly data-driven world, applied economics programs have an increased role to play through
teaching data literacy and modern data analytics skills.

 A good starting point may be to teach relevant tools of data exploration and visualization, also

known as exploratory data analysis (EDA), that are popular in the field of data science. The exploratory

nature of EDA contrasts with statistical modeling and hypothesis testing, a long-standing tradition in

modern economics curriculums. An increasing number of economics courses integrate statistical

programming in R as an integral topic. Current examples include Microeconomics with R by John

Humphries at Yale University, Methodology of Economic Research by Jude Bayham at Colorado State

University, econometrics course materials taught with R by Ed Rubin, Data Science for Economists by Grant

Abstract

With an accelerated pace of data accumulation in the economy, there is a growing need for data literacy

and practical skills to make use of data in the workforce. Applied economics programs have an important

role to play in training students in those areas. Teaching tools of data exploration and visualization, also

known as exploratory data analysis (EDA), would be a timely addition to existing curriculums. It would

also present a new opportunity to engage students through hands-on exercises using real-world data in

ways that differ from exercises in statistics. In this article, we review recent developments in the EDA

toolkit for statistical computing freeware R, focusing on the tidy verse package. Our contributions are

three-fold; we present this new generation of tools with a focus on its syntax structure; our examples

show how one can use public data of the U.S. Census of Agriculture for data exploration; and we highlight

the practical value of EDA in handling data, uncovering insights, and communicating key aspects of the

data.

Teaching and Educational Methods

Page | 30 Volume 2, Issue 3, June 2020

McDermott at University of Oregon, and Applied Econometrics by Taro Mieno at University of Nebraskaɀ

Lincoln as far as the authors are aware of. Indeed, the tools of EDA are generally complementary to the

teaching of analytical skills and thought processes emphasized in applied economics. Teaching EDA tools

would be not only timely but also stimulating for students who have an interest in learning to use real-

world data on current socioeconomic issues. Hands-on EDA exercises can provide a vital opportunity for

students to acquire practical data analysis skills beyond the usual exercises in statistics.

 In this article, we review recent developments in the EDA toolkit in statistical computing freeware

R. Our intended audience includes course instructors, graduate students, and advanced undergraduate

students particularly those who are pursuing independent studies, participating in research projects, or

serving as teaching assistants. We use data sets familiar to agricultural economists for illustration. Our

contributions are three-fold: we present this new generation of tools with a focus on its syntax structure,

our examples show how one can use public data of the U.S. Census of Agriculture for data exploration, and

we highlight the practical value of EDA in handling data, uncovering insights, and communicating key

aspects of the data. Our review focuses on the tools of the tidyverse package, a meta package that includes

ggplot2 and dplyr and uses a streamlined coding syntax across its member packages (Wickham et al.

2019).1 In writing this article, we borrow core concepts from R for Data Science (Wickham and

Grolemund 2017). For interested readers, additional resources include ModernDive (Ismay and Kim

2019), Data Visualization with R (Kabacoff 2018), Data Visualization: Practical Introduction (Healy

2018) and Geocomputation with R (Lovelace, Nowosad, and Muenchow 2019).2 All R code used in this

document is made available in the supplementary appendix.3

 The rest of the article is organized as follows. We provide a short, general comparison between R

and Stata, a popular proprietary statistical software among economists. The main contents of our review

of R tools consist of four sections that (a) introduce core data visualization methods of ggplot2, (b)

demonstrate the application of data transformation methods of dplyr with U.S. agriculture data, (c) provide

an analytical example within a data exploration narrative, and (d) briefly describe additional tools. The
final section concludes the article.

2 Comparison of R and Stata
As a general comparison, we comment on the relative strengths and weakness of two commonly used

software programming languages in the field of economics, R and Stata.4

2.1 A Basic Introduction
R, formally known as R Projects, is a statistical computing, graphics, and programming language that is

available free of charge. 2 ÉÓ ÎÏÔ ÍÁÎÁÇÅÄ ÂÙ Á ÓÉÎÇÌÅ ÐÅÒÓÏÎ ÏÒ ÃÏÍÐÁÎÙ ÂÕÔ ÉÎÓÔÅÁÄ ÂÙ ÁÎ Ȱ2 ÃÏÒÅ ÇÒÏÕÐȢȱ5

The R core group has the authority to modify the R source code archive. For most users, it suffices to know

that R simply executes commands according to programs, or R functions, that are loaded by default and by

the user. To execute commands beyond basic computations and visualization tasks, R users need to load R

packages, collections of R functions developed and shared by other R users. Which packages to use depends

1 They are not part of the base package. To install a R package, execute the code in the R console, for example:
install.packages("tidyverse").
2 R for Data Science: https://r4ds.had.co.nz/ , ModernDive: https://moderndive.com/ , Data Visualization with R:
https://rkabacoff.github.io/datavis/ , Data Visualization A Practical Introduction: http://socviz.co/index.html , Geocomputation
with R: https://geocompr.robinlo velace.net/.
3 https://github.com/tmieno2/R -AETR
4 Software download: https://cloud.r -project.org/ and https://download.stata.com/download/.
5 https://www.r -project.org/contributors.html .

https://r4ds.had.co.nz/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
http://socviz.co/index.html
https://geocompr.robinlovelace.net/
https://r4ds.had.co.nz/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
http://socviz.co/index.html
https://geocompr.robinlovelace.net/
https://github.com/tmieno2/R-AETR
https://cloud.r-project.org/
https://www.r-project.org/contributors.html

Page | 31 Volume 2, Issue 3, June 2020

on the ÕÓÅÒȭÓ ÏÂÊÅÃÔÉÖÅÓ ÁÎÄ ÐÅÒÓÏÎÁÌ ÐÒÅÆÅÒÅÎÃÅÓȢ &ÏÒ ÅØÁÍÐÌÅȟ Ô×Ï ÐÏÐÕÌÁÒ %$! ÔÏÏÌÂÏØÅÓ ÁÒÅ ÔÈÅ

tidyverse package, which is our focus in this article, and the data.table package.

 Stata is a proprietary statistics software from StataCorp. In most universities, students can access

Stata in their computer labs through a site license. As of December 2019, the Stata perpetual license for

U.S. students is $225 for Stata/IC (the least powerful version), $425 for Stata/SE, $595 for Stata/MP 2-core

(midrange capabilities), and $795 for Stata/MP (the most powerful). Short-term U.S. student licenses are

also available for $48 for Stata/IC and $125 for Stata/SE for 6 months. StataCorp is responsible for software

descriptions, updates, and additions of Stata commands. Separately, some user-contributed Stata packages,

a collection of Stata ado files, are available through RePEc (which stands for Research Papers in

Economics). Also, StataCorp maintains a quarterly publication of the Stata journal for user-contributed

statistical techniques and effective teaching methods using Stata.

2.2 Statistical Capability
R is open-source software with a rapidly expanding toolkit built by the R user community across diverse

fields of statistics and sciences. The R toolkit includes advanced tools of machine learning, Bayesian

statistics, and spatial statistics that are of interest to many economists, as well as statistical tools in other

disciplines like biostatistics that may help economists working on interdisciplinary research. R offers rich

tools in some fields of econometrics, including, for example, linear or quadratic programming (Rglpk and

ipotr packages), nonlinear optimization (nloptr package), and advanced quantile regression analyses

(quantreg, quantreg.nonpar, and bayesQR packages).

 3ÔÁÔÁȭÓ ÄÅÖÅÌÏÐÍÅÎÔ ÏÆ ÎÅ× ÔÏÏÌÓ ÐÒÉÍÁÒÉÌÙ ÒÅÓÔÓ ÏÎ 3ÔÁÔÁ#ÏÒÐȭÓ ÕÎÄÅÒÔÁËÉÎÇȢ 'ÉÖÅÎ ÉÔÓ ÌÉÍÉÔÅÄ

resources, the company focuses on tools for social scientists, including economists. For instance, Stata

offers a variety of estimation options for state-of-the-art treatment effects and panel data estimation

techniques that are useful to economists. Advanced coding implementation of customized nonlinear

estimation is also available.6 The documentation of various commands in Stata is consistently managed by

the company and hence user-friendly; in contrast the user-contributed projects of R may lack consistent

documentation or transferable command syntaxes across various packages. Thus, a familiarity with both

R and Stata would give the user access to a wide range of statistical methods, some of which may be

available in one software but not in the other.

2.3 Machine Learning Methods

There is a growing interest in R among agricultural economists, and it can be explained by the increased

importance of Big Data and the expanding capabilities of machine learning methods (Coble et al. 2018;

Storm, Baylis, and Heckelei 2019). Numerous packages that implement state-of-the-art machine learning

methods are available in R, including LASSO, Random Forest, Neural Network, and Boosted Regression.

The keras and tensorflow packages handle Convolutional Neural Network (CNN), a workhorse for image

processing used in facial recognition and autonomous driving. An interesting application of CNN may

include spatial data analysis (Storm, Baylis, and Heckelei 2019). The rnn package allows for recurrent

neural network modeling, which is particularly suitable for state-dependent time-series analysis and a

certain type of price analysis. The grf package leads the generalized random forest framework, which

includes causal forest, quantile forest, and instrumental forest developed by Athey, Tibshirani, and Wager

6 https://blo g.stata.com/2016/01/26/programming -an-estimation-command-in-stata-a-review-of-nonlinear-optimization-
using-mata/

https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/

Page | 32 Volume 2, Issue 3, June 2020

(2019). The XGBoost package offers extreme gradient boosting regression, which has been shown to

outperform other machine learning methods in many applications.

 In the latest version of Stata 16, StataCorp has introduced LASSO commands. In addition, user-

contributed packages such as LASSOPACK (LASSO, elastic net, and ridge regressions), RFOREST (random

forest classification and regression), and KFOLDCLASS (K-fold cross-validation for binary outcomes) are
available. It is plausible that many machine learning algorithms will be gradually made available.

2.4 Spatial Data Handling
Many data analyses in agricultural economics involve spatial considerations. R offers an extensive

capability in processing spatial data (sp, sf, raster, rgdal, and rgeos packages are some examples) and

creating geographical maps (ggplot2 and tmap packages have wide use). If for instance, one is interested

in understanding the impact of climate on cropping patterns at the sub-county level, he or she could

combine the Cropland Data Layer (CDL) files and the county boundaries data to summarize a mixture of

cropping patterns for each county, all of which can be done within R without having to use specialized

programs such as ArcGIS or QGIS.7 In contrast, Stata has a very limited capability for handling spatial data

or generating geographic data figures. One exception may be the user-contributed mapping commands like

spmap and maptile.

2.5 Publicly Available Data
Recent developments in R include packages that are dedicated specifically for downloading publicly

accessible data. One can download data from the USDA NASS CDL (cdlTools package), USGS and EPA

hydrologic and water quality data (dataRetrieval), Quick Stats (rnassqs package), PRISM (prism package),

Daymet (daymetr package), Sentinel-2 satellite imagery data (sen2r package), the National Elevation Data

Set digital elevation models, the NCSS Soil Survey Geographic data set, and many others (FedData package).

These R packages can automate the process of manually downloading individual public data files.

Additionally, the httr package allows for data requests via Application Programming Interface (API), and

the jsonlite package helps process JSON data files that are common in API outputs. Stata has a capability to

utilize API through the winexec curl command. Also, downloaded data in XML or JSON format can be

imported into Stata via xmluse or insheetjson, respectively.

3 Data Visualization with ggplot2
4ÈÉÓ ÓÅÃÔÉÏÎ ÈÉÇÈÌÉÇÈÔÓ ÓÉÍÐÌÅ ÄÁÔÁ ÖÉÓÕÁÌÉÚÁÔÉÏÎ ÍÅÔÈÏÄÓ ×ÉÔÈ 2ȭÓ ggplot2 package for creating scatter,

line, and bar plots.8 The ggplot2 syntax has three essential components for generating data plots: data, aes,
and geom. It implements the following philosophy:

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.
(Wilkinson 2005, p. 42)

where the data, aesthetic attributes, and geometric objects are programmed as follows:

Ɇ data: a data frame; e.g., the first argument in ggplot(data, ...).

7 For example, see R as GIS for Economists: https://tmieno2.github.io/R -as-GIS-for-Economists/.
8 For basic R tutorials, try http://www.cookbook -r.com/ or https://en.wikibooks.org/wiki/R_Programming/Sample_Session. A
useful material for teaching may be https://psyteachr.github.io/ .

https://tmieno2.github.io/R-as-GIS-for-Economists/
http://www.cookbook-r.com/
https://en.wikibooks.org/wiki/R_Programming/Sample_Session
https://psyteachr.github.io/

Page | 33 Volume 2, Issue 3, June 2020

Ɇ aes: x and y variables specifying the horizontal and vertical axes and other variables by which data can
appear in different colors, shapes, sizes, etc.; e.g., aes(x = var_x, y = var_y, color = var_z).

Ɇ geom: geometric objects such as points, lines, bars, etc.; e.g., geom_point(), geom_line(), geom_bar(),
geom_histogram().

This simple philosophy provides an easy way for remembering how to relate the three components with
ÅÁÃÈ ÏÔÈÅÒ ÉÎ ÃÏÄÉÎÇȢ .ÏÔÅ ÔÈÁÔ ÄÁÔÁ ÓÅÔÓ ÁÒÅ ÏÆÔÅÎ ÒÅÆÅÒÒÅÄ ÔÏ ÁÓ ÄÁÔÁ ÆÒÁÍÅÓȟ ÃÏÒÒÅÓÐÏÎÄÉÎÇ ÔÏ 2ȭÓ
data.frame class objects that, unlike matrix class objects, can contain both string and numeric variables in
columns.
 We now examine some basic examples. The following code produces scatterplots of horsepower
and miles per gallon using the mtcars data set, a sample data set automatically loaded in base R (Figure 1).
It came from the 1974 Motor Trend U.S. magazine and contains 11 automobile specification attributes for
32 cars, including attributes like gross horsepower (hp), miles per gallon (mpg), number of cylinders (cyl),
automatic transmission indicator (am), and weight in 1,000 of pounds (wt).9

Figure 1. Example of Scatterplots Using the mtcars Data Set in Base R

)Î ÔÈÅ ÎÅØÔ ÅØÁÍÐÌÅȟ ×Å ÁÄÄ ÍÏÒÅ ÌÁÙÅÒÓ ÏÆ ÇÅÏÍÅÔÒÉÃ ÏÂÊÅÃÔÓȟ ÓÅÅ ÂÕÌÌÅÔ ÐÏÉÎÔ ȰÇÅÏÍȱ ÁÂÏÖÅ ɉ&ÉÇÕÒÅ

2). By default, a geometric object inherits the aesthetic attributes specified in gglot(data, aes()). To change

those attributes, one needs to provide specific attributes for each geometric object. In the first two plots,

note that the presence or absence of a color attribute specification in ggplot(data, aes()), which implies

different color attribute specifications in geom_smooth(). The third plot contains an example of fixed

aesthetic attributes like color and point size that are specified outside aes() and hence do not depend on

9 While unrelated to agriculture, this data set is commonly used for basic R tutorials and hence good to be familiar with.

scatterplot of hp and mpg

ggplot (mtcars, mapping = aes(x = hp, y = mpg)) +
 geom_point ()

convert variable cylinder into a categorical variable

mtcars $cyl <- as.factor (mtcars $cyl)

scatterplot with added color and shape by cylinder

ggplot (mtcars, mapping = aes(x = hp, y = mpg, color = cyl)) +

 geom_point (aes(shape = cyl))

Page | 34 Volume 2, Issue 3, June 2020

the data. Also, one can add a geometric object with a new data set. For example, the third plot contains a

geometric object based on a subset of the data.

Figure 2 . Example of Scatterplots with Linear Model and Smooth Fits Using the mtcars Data

add a layer of linear regression model fit for each cylinder type

ggplot (mtcars, aes(x = hp, y = mpg, color = cyl)) +

 geom_point (aes(shape = cyl)) +

 geom_smooth(method = lm)

add a layer of smooth regression fit (locally estimated scatterplot
smoothing: loess) across all cylinder types

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +
 geom_smooth()

add a layer of large yellow dots to indicate automatic transmission

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (data = filter (mtcars, am == 0), color = "yellow" , size = 5) +

 geom_point (aes(shape = cyl, color = cyl)) +
 geom_smooth()

Page | 35 Volume 2, Issue 3, June 2020

Additionally, a facet_wrap() or facet_grid() layer splits the data into subsets by a categorical variable(s) and

generates multiple data plots on those subsets (Figure 3).

Figure 3 . Example of Scatterplots for Subsets of the mtcars Data
Note: The data are split into two subsets by transmission type (top) and six subsets by the combination of transmission type

and number of cylinders (bottom). Variables mpg, hp, and cyl refer to miles per gallon, horse power, and the number of cylinders,

respectively.

Various cosmetic adjustments can be controlled through additional layers of coordinate attributes

(scale and coord) and other graphics attributes (labs, theme, and guides) as demonstrated in Figure 4.

add a character variable for transimission type

mtcars $am_char < - recode (c(mtcars $am), "0" = "automatic" , "1" = "manual")

plot subsets of data by transmission type

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +

 facet_wrap (~ am_char)

plot subsets of data by transmission type and number of gears

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +

 facet_grid (gear ~ am_char)

Page | 36 Volume 2, Issue 3, June 2020

Figure 4 . Example of Scatterplots Using the mtcars Data with Cosmetic Adjustments
Notes: (A) Specified breaks on the y axis, (B) log-scaled axes, (C) added axis labels and a black-and-white theme, and (D)
enhanced legend keys.

change the displayed values on the y axis

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +

 scale_y_continuous (breaks = seq(10, 36, by = 4))

map in log10 scale

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +

 scale_x_log10 () + scale_y_log10 ()

change theme to black and white and overwrite axis labels

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +

 theme_bw() + labs (x = "Horse power" , y = "Miles per gallon")

overwrite the *joint legend* for color and shape attributes

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +
 guides (

 color = guide_legend (title = "cylinder" , override.aes = list (size = 4)) ,

 shape = guide_legend (title = "cylinder" , override.aes = list (size = 4))
)

A B

Page | 37 Volume 2, Issue 3, June 2020

 The next set of figures provides examples of adding a data label layer (Figure 5) and examples of

histograms and bar plots (Figure 6).

Figure 5. Example of Plots Using the mtcars Data with Selected Data-Point Labels

mtcars $car_model < - rownames(mtcars)

add labels of car model for cars that have either hp > 200 or mpg > 25

ggplot (mtcars, aes(x = hp, y = mpg)) +

 geom_point (aes(shape = cyl, color = cyl)) +

 ggrepel :: geom_label_repel (aes(label = car_model),

 data = filter (mtcars, hp > 200 | mpg > 25))

example of boxplot

ggplot (mtcars, aes(x = am_char, y = wt)) +

 geom_boxplot () +

 geom_label_repel (aes(label = car_model),

 data = filter (mtcars, wt > 4.5 | wt < 3, am == 0))

Page | 38 Volume 2, Issue 3, June 2020

Figure 6 . Example of Histograms (Classic Compound Bars and a Line Plot Style) and Bar Plots
(Three Examples) Using the mtcars Data

examples of histograms

ggplot (mtcars, aes(x = wt, fill = am_char)) +

 geom_histogram (binwidth = .75)

ggplot (mtcars, aes(x = wt, color = am_char)) +

 geom_freqpoly (binwidth = .75 , position= "dodge" , size = 2)

examples of barplots

ggplot (mtcars, aes(x = cyl, fill = am_char)) + geom_bar()

ggplot (mtcars, aes(x = cyl, fill = am_char)) + geom_bar(position = "dodge")

ggplot (mtcars, aes(x = cyl, fill = am_char)) + geom_bar(position = "fill") + labs(y = "fract
ion")

Page | 39 Volume 2, Issue 3, June 2020

Variables wt, cyl, and am_char refer to weight, the number of cylinders, and transmission type, respectively.

4 Data Exploration with dplyr
This section reviews essential functions for transforming data with dplyr and uses U.S. agriculture data for

a demonstration of EDA that includes querying data, applying geospatial visualizations, and visual

presentations of data summaries. Before we begin, let us note why exploring data is important and why

tools of data transformation matter. Most statistical tools allow us to transform a data set by creating new

variables, selecting specific subsets, sorting or grouping data, collapsing data into group-level statistics, or

any sequential combination of those operations. And perhaps when combined with some data

visualization, often by chance, the transformed data set may reveal new aspects of the data.

 While curiosity-based exploration may seem like a luxury, it is necessary if we want to understand

the data and discover the insights it provides. Only after a particular combination of data transformations,

may certain aspects of the data be revealed or become noticeable. That should prompt subsequent

ÑÕÅÓÔÉÏÎÓ ÌÉËÅȟ Ȱ(Ï× ÄÏ ×Å ËÎÏ× ×ÈÉÃÈ ÄÁÔÁ ÔÒÁÎÓÆÏÒÍÁÔÉÏÎÓ ÔÏ ÐÅÒÆÏÒÍȩȱ ÏÒ Ȱ(Ïw can we tell whether

×Å ÈÁÖÅ ÕÎÃÏÖÅÒÅÄ ÁÌÌ ÐÏÓÓÉÂÌÅ ÉÎÔÅÒÅÓÔÉÎÇ ÁÓÐÅÃÔÓ ÏÆ ÔÈÅ ÄÁÔÁȩȱ ! ÓÉÍÐÌÅ ÁÎÓ×ÅÒ ÔÏ ÂÏÔÈ ÑÕÅÓÔÉÏÎÓ ÉÓȟ Ȱ7Å

ÄÏÎȭÔȟ ÂÕÔ ×Å ÓÈÏÕÌÄ ÔÒÙ ÏÕÒ ÂÅÓÔȢȱ 4ÈÉÓ ÉÓ ÐÒÅÃÉÓÅÌÙ ×ÈÙ ÔÈÅ ÔÏÏÌÓ ÏÆ %$! ÍÁÔÔÅÒȢ 4ÈÅ ÅÁÓÉÅÒ ÁÎÄ ÔÈÅ ÓÉÍÐÌÅÒ

the tools are, the more frequently we use them and the more thoroughly we explore the data. The power

of data visualization is multiplied by the ability and agility to transform the data at hand.

The tools of the dplyr package enable us to act nimbly, explore, and understand the data. That can make us

feel like we are interacting with the data rather than merely transforming it. Before discussing why that

may be the case, let us introduce the core R functions in the dplyr package:

Ɇ filter() : extracts rows (observations) by logical vectors.
Ɇ select(): extracts columns (variables) by column names.
Ɇ group_by(): assigns rows into groups by column names.
Ɇ mutate(): creates new variables in a data frame.
Ɇ summarise(): collapses a data frame into summary statistics.
Ɇ arrange(): sorts row ordering based on column names.

These function names are self-descriptive: filter() makes a subset of the data set by extracting rows that

meet specified conditions; select() extracts selected variables; group_by() creates a grouped data frame,

which enables subsequent computations in mutate() and summarise() to be performed within each group;

mutate() creates new variables through direct arithmetic operations of existing variables, canned

functions, and user-defined functions; summarise() transforms a data set into statistics through canned

functions or user-defined functions; and arrange() sorts the row order of the data set. These functions can

be combined in any order to accomplish a desired data transformation. For example, one can extract a

subset of the data by filter(), set groups by group_by(), compute summary statistics by summarise(), and
use arrange() to sort the results.

 Table 1 provides a comparison of these functions with the corresponding commands in Stata. Most

applied economists would be very familiar with these data transformations, which is a helpful set of tools

for getting started with dplyr. Here, we offer three reasons for why these dplyr functions can be perceived

as more powerful than the corresponding functions in other programs such as Stata.

 First, the dplyr functions are designed to be sequentially combined via a pipe operator (%>%), which

makes the sequencing very smooth and natural to code. Each of the functions above takes a data frame

object in the first argument and returns a data frame object, and this allows for piping, that is, applying

functions sequentially by passing the output of one function into the first argument of the next. For

Page | 40 Volume 2, Issue 3, June 2020

 Table 1. Comparable Data Transformation Commands between R and Stata

example, func3(func2(func1(data,...), ...), ...) can be rewritten as data %>% func1(...) %>% func2(...) %>%

func3(...). Piping makes R code more readable and breaks down a complex data manipulation into a

sequence of simple steps. Notably, we can read a sequence of operations in plain English by substituting

the %>% symbol with then. For example, start with the data, then apply func1(...), then func2(...), and then

func3(..). This makes data exploration approachable (the user has an intuitive framework for coding the

first few functions), expandable (functions are easy to add on), and even rewarding (the resulting code can

accomplish complex data transformations).

 Second, the simplicity in needing to remember just six functions is empowering for the user. These

functions condense the essence of data transformations needed for exploring data. Remembering these

functions and piping them allows us to perform a myriad of data transformations without dedicating much

brain power to formulating the coding instructions.

 4ÈÉÒÄȟ 2ȭÓ ÄÁÔÁ ÍÁÎÁÇÅÍÅÎÔ ÅÎÖÉÒÏÎÍÅÎÔ ÉÓ ÃÏÎÄÕÃÉÖÅ ÔÏ ÐÅÒÆÏÒÍÉÎÇ Á ÓÅÒÉÅÓ ÏÆ ÄÁÔÁ

transformation and visualization tasks without any commitment to altering the working copy of the data

set. R separately handles the task of transforming data from the task of saving the transformed data under

a given name. Piping allows us to execute a series of data tasks without needing to overwrite the working

data set. When it is desirable to save transformed data (e.g., creating different data summaries or using

them in subsequent calculations), it is straightforward to keep multiple data sets in the working

environment (i.e., just give new names to outputs).

With those six commands presented above, we can approach data exploration through iterative trials of

data transformations and visualizations through extracting subsets, grouping, sorting, generating

variables, and computing data summaries. Each iteration, sparked by an inquisitive hypothesis, offers the

potential to reveal new aspects of the data. The interesting data patterns, correlations, anomalies, and

outliers revealed in one inquiry can lead to another line of inquiry. By allowing improvisations through

EDA, we create a sense of interaction with the data. After repeated use, these tools in R can give one an

increased sense of confidence and control to explore the data at hand.

4.1 Farm Data
We now move to our demonstrations with real data. In the rest of the section, we examine the U.S. Census

of Agriculture (2017),10 for which various summary data are publicly available at the country, state, and

10 Available at https://www.nass.usda.gov/Publications/AgCensus/2017/index.php and also in the supplementary appendix.

https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php

Page | 41 Volume 2, Issue 3, June 2020

county levels. For convenience, the downloaded data set is separated into a national-level data set us17,

state-level data set state17, and county-level data set county17. For us17, specifying some variables by
select() and printing the first five rows yields:

Note that the national level data set alone contains over 80,000 rows. The state or county level data set will

contain far more rows of data. To identify a variable of interest in a large data set like this, it is essential to

have some understanding of its data structure. Two useful approaches here are to (1) become familiar with

Quick Stats 2.0,11 with which these data sets are consistently organized and (2) scan through published

census of agriculture tables for its contents and organization.

 Suppose that we are interested in the prevalence of small (those farms with less than $100,000 of

sales) and nonsmall farms (for the sake of discussion, say, farms with greater than $100,000). The

information needed for this is found in Table 2 of the U.S. and state census tables. We can extract the

relevant information by specifying the table number in filter() and inspecting unique entries in the Item

column:

The information we need is a cross tabulation between the Item ÂÅÉÎÇ Ȱ#/--/$)49 4/4!,3ɂ

/0%2!4)/.3 7)4(3!,%3ȱ ÁÎÄ ÔÈÅ Class, two variables that contain the number of farms and the

information about farm sales class. We use filter() to pinpoint the data we are seeking.

11 Accessible at https:// quickstats.nass.usda.gov/.

us17 %>% select (census_table , Sector, Commodity, Item, geog_level, Value) %>% print (n=5)
A tibble: 82,025 x 6
census_table Sector Commodity Item geog_level Value
<dbl> <chr> <chr> <chr> <chr> <dbl>
1 ʦ %#/./-ƛ &!2- /0%2!ƛ &!2- /0%2!4)/.3 - .5-ƛ .!4)/.!, ʧƚʣʩÅʫ
ʢʢ ʧ ʦ %#/./-ƛ &!2- /0%2!ƛ &!2- /0%2!4)/.3 - !#2ƛ .!4)/.!, ʮƚʣʣÅʭ
ʢʢ ʨ ʦ %#/./-ƛ &!2- /0%2!ƛ &!2- /0%2!4)/.3 - !2%ƛ .!4)/.!, ʩƚʩʦÅʧ
ʢʢ ʩ ʦ %#/./-ƛ !' ,!.$!' ,!.$Ɨ).#, "5),$).ƛ .!4)/.!, ʦƚʨʦÅʫ
ʢʢ ʪ ʦ %#/./-ƛ !' ,!.$!' ,!.$Ɨ).#, "5),$).ƛ .!4)/.!, ʧƚʮʭÅʨ
ʢʢ ʢ ƛ ×ÉÔÈ ʭƚʧʣʧÅ˩ʣʩ ÍÏÒÅ ÒÏ×Ó

find the relevant Item

us17 %>% filter (census_table == 2) %>%
 select (Item) %>% unique ()
A tibble: 144 x 1
Item
<chr>
1 COMMODITY TOTALS - OPERATIONS WITH SALES
2 COMMODITY TOTALS - SALES, MEASURED IN PCT OF FARM OPERATIONS
3 COMMODITY TOTALS - SALES, MEASURED IN $
4 COMMODITY TOTALS - SALES, MEASURED IN PCT OF FARM SALES
5 COMMODITY TOTALS - SALES, MEASURED IN $ / OPERATION
6 CROP TOTALS - OPERATIONS WITH SALES
7 CROP TOTALS - SALES, MEASURED IN PCT OF FARM OPERATIONS
8 CROP TOTALS - SALES, MEASURED IN $
9 CROP TOTALS - SALES, MEASURED IN PCT OF FARM SALES
10 GRAIN - OPERATIONS WITH SALES
ʢʢ ʢ ƛ ×ÉÔÈ ʦʨʩ ÍÏÒÅ ÒÏ×Ó

https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/

Page | 42 Volume 2, Issue 3, June 2020

Note that the national data set provides the aggregate record for the sales class of $5,000,000 or more as

the most detailed information on larger farms. If similar operations are applied to the state or county level

data, one would find that all sales classes above $1,000,000 and above $500,000 are aggregated,

respectively.

 ,ÅÔȭÓ ÔÕÒÎ ÔÏ ÃÏÕÎÔÙ-level data. By continuing on the previous example, suppose that we want to

count farms by a binary sales-class consisting of small farms (label S) versus not-small farms (label NS) at

the county level. We do this by selecting relevant data, creating a new class variable (by comparing the

sales class in the data to user-defined reference class_S that contains a vector of class names for those under

$100,000 in sales), and summarizing the number of farms by county and the binary sales-class:

find the relevant Item and Class

farm_class_US < - us17 %>%
 filter (

 census_table == 2,

 grepl ("COMMODITY TOTALS - OPERATIONS WITH SALES", Item),

 ! is.na (Class)

) %>% select (Class, Value)

farm_class_US
A tibble: 16 x 2
Class Value
<chr> <dbl>
1 FARM SALES: (LESS THAN 1,000 $) 603752
2 FARM SALES: (1,000 TO 2,499 $) 187949
3 FARM SALES: (2,500 TO 4,999 $) 185341
4 FARM SALES: (5,000 TO 9,999 $) 208074
5 FARM SALES: (10,000 TO 19,999 $) 174780
6 FARM SALES: (20,000 TO 24,999 $) 53438
7 FARM SALES: (25,000 TO 39,999 $) 100490
8 FARM SALES: (40,000 TO 49,999 $) 43623
9 FARM SALES: (50,000 TO 99,999 $) 119434
10 FARM SALES: (100,000 TO 249,999 $) 1309 32
11 FARM SALES: (250,000 TO 499,999 $) 87839
12 FARM SALES: (500,000 TO 999,999 $) 69703
13 FARM SALES: (1,000,000 OR MORE $) 76865
14 FARM SALES: (1,000,000 TO 2,499,999 $) 53611
15 FARM SALES: (2,500,000 TO 4,999,999 $) 14366
16 FARM SALES: (5,000,000 OR MORE $) 8888

Page | 43 Volume 2, Issue 3, June 2020

When we compare where small (S) and nonsmall farms (NS) are numerous, the two lists of top counties

are not geographically overlapping for these two farm classes. Summing up the number of farms within
each binary sales class yields:

farms < - county17 %>%
 filter (

 census_table == 2,

 grepl ("COMMODITY TOTALS - OPERATIONS WITH SALES", Item),

 ! is.na (Class), Co_name != "NULL"

) %>%

 # create a new variable indicating sales < $100k

 mutate (class_S_NS = ifelse (Class %in% class_S, "S" , "NS")) %>%
 group_by (St_code, St_name, Co_code, Co_name, class_S_NS) %>%
 summarise(Value = sum(Value, na.rm = T))

show the top 10 county for the numbers of small farms

farms %>% filter (class_S_NS =="S") %>% arrange (desc(Value)) %>% head(n = 10)
A tibble: 10 x 6
Groups: St_code, St_name, Co_code, Co_name [10]
St_code St_name Co_code Co_name class_S_NS Value
<chr> <chr> <chr> <chr> <chr> <dbl>
1 04 AZ 001 APACHE S 5529
2 06 CA 073 SAN DIEGO S 4571
3 48 TX 367 PARKER S 4521
4 04 AZ 017 NAVAJO S 4181
5 48 TX 231 HUNT S 4040
6 41 OR 005 CLACKAMAS S 4013
7 15 HI 001 HAWAII S 3929
8 12 FL 083 MARION S 3776
9 48 TX 497 WISE S 3610
10 08 CO 123 WELD S 3407

show the top 10 county for the numbers of non - small farms

farms %>% filter (class_S_NS == "NS") %>% arrange (desc(Value)) %>% head(n = 10)
A tibble: 10 x 6
Groups: St_code, St_name, Co_code, Co_name [10]
St_code St_name Co_code Co_name class_S_NS Value
<chr> <chr> <chr> <chr> <chr> <dbl>
1 42 PA 071 LANCASTER NS 2382
2 06 CA 019 FRESNO NS 2240
3 06 CA 107 TULARE NS 1800
4 06 CA 077 SAN JOAQUIN NS 1414
5 06 CA 099 STANISL AUS NS 1305
6 06 CA 047 MERCED NS 1100
7 27 MN 145 STEARNS NS 1091
8 19 IA 167 SIOUX NS 1070
9 06 CA 097 SONOMA NS 84 9
10 55 WI 043 GRANT NS 828

Page | 44 Volume 2, Issue 3, June 2020

Of the 2 million farms for which the census gathered data, roughly 1.68 million farms (82 percent) had less

than $100,000 in revenues. The USDA defines a ÆÁÒÍ ÔÏ ÂÅ ȰÁÎÙ ÐÌÁÃÅ ÆÒÏÍ ×ÈÉÃÈ Αρȟπππ ÏÒ ÍÏÒÅ ÏÆ

ÁÇÒÉÃÕÌÔÕÒÁÌ ÐÒÏÄÕÃÔÓ ×ÅÒÅ ÐÒÏÄÕÃÅÄ ÁÎÄ ÓÏÌÄȟ ÏÒ ÎÏÒÍÁÌÌÙ ×ÏÕÌÄ ÈÁÖÅ ÂÅÅÎ ÓÏÌÄȟ ÄÕÒÉÎÇ ÔÈÅ ÃÅÎÓÕÓ ÙÅÁÒȱ

ɉ/ȭ$ÏÎÏÇÈÕÅ ÅÔ ÁÌȢ ςππωɊȢ)Î ÆÁÃÔȟ ÏÖÅÒ φππȟπππ ÆÁÒÍÓ ÄÏ ÎÏÔ ÈÁÖÅ ÓÁÌÅÓ ÁÂÏÖÅ Αρȟπππ ÉÎ ςπρχȟ ÁÓ ÓÈÏ×n in

the first summary farm_class_US above. Although the definition of farms in USDA statistics has been

ÄÅÂÁÔÅÄ ÐÒÅÖÉÏÕÓÌÙȟ ÎÏ ÃÈÁÎÇÅ ÈÁÓ ÂÅÅÎ ÍÁÄÅ ɉ/ȭ$ÏÎÏÇÈÕÅ ÅÔ ÁÌȢ ςππωɊȢ

 One strength of R for agricultural data analysis is to be able to produce geographical representations

of data. With county-level data paired with the state-county Federal Information Processing Standards

(FIPS) codes, it is straightforward to project the data on maps. For instance, the following sample code

shows how variable var1 in data set data can be mapped at the county level:

Here, geo_county contains the geometry data of U.S. county boundaries (which can be replicated by

downloading any county-level information of the American Community Survey with tidycensus package).

Layer geom_sf() handles the geometry aesthetic and here supplies a layer that fills county shapes with

different colors depending on the value of var1. Additional layers coord_sf(datum = NA) and

theme_minimal() instruct how to remove data plot graphics like axes and data plot area, giving a clean finish

to the map output. Figures 7 and 8 provide examples of mapping the farm distributions using the binary
revenue-class variable defined above.

total number of farms by class

farms %>% group_by (class_S _NS) %>%
 summarise(subtotal = sum(Value, na.rm = T)) %>%
 ungroup () %>%

 mutate (total = sum(subtotal, na.rm = T),

 fraction = round (subtotal / total, 2))
A tibble: 2 x 4
class_S_NS subtotal total fraction
<chr> <dbl> <dbl> <dbl>
1 NS 365339 2042220 0.18
2 S 1676881 2042220 0.82

merge county level data with geographic data and generate a color - coded map

left_join (geo_county, data, by = c("GEOID" = "FIPS")) %>%

 ggplot () +

 geom_sf(aes(fill = var1)) +

 coord_sf (datum = NA) + theme_minimal ()

Page | 45 Volume 2, Issue 3, June 2020

Figure 7 . Map of Farm Counts Using the Binary Sales-Revenue Class in the 2017 U.S. Census of
Agriculture

The first map shows the distribution of farms with sales less than $100,000, and the second map shows the

distribution of farms with sales above $100,000.

 In addition to the raw farm counts, the next map considers the relative prevalence of the small and

nonsmall farms (Figure 8). This approach may more clearly highlight the geographic concentrations of

farms in different farm-size classes across counties, especially in terms of how the concept of a farm (i.e.,

the revenue size of active farming and what meets the criteria for being considered a farm in the U.S. Census

of Agriculture database) systematically varies across geography.

Page | 46 Volume 2, Issue 3, June 2020

Figure 8 . Map of Relative Farm Counts Using the Binary Sales-Revenue Classes in the 2017 U.S.
Census of Agriculture

The two maps show the relative frequency of farms with sales below $100,000 (first), and the farms with

sales above $100,000 (second).

 Next we turn to differences across major farming industries. Suppose that we want to see how the

concept of a farm differs across industries. We can examine the distributions of farm numbers and sales

values this time by industry. In the first example, we show Sankey flow charts (we used the flipPlots

package; Figures 9 and 10), which illustrate the contributions of different segments of data to the grand

total like various streams combining into a river. Here, we add an intermediate layer that represents the

subtotals by farm-sales class. For this purpose, we consider four levels of sales classes; marginal (less than

