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1 Introduction  
 

4ÈÅÒÅȭÓ ÇÏÌÄ ÉÎ ÔÈÅÍ ÔÈÁÒ hills! ɂMark Twain in The American Claimant 

 

A hundred seventy years ago Americans flocked to California in search of gold. The Gold Rush left the 

country with a powerful image of massive realignment of capital and labor in search of new economic 

opportunities. With each subsequent era came new manifestations of the Gold Rush in the form of booming 

industries, invoking a sense of new, ground-breaking opportunities that could lead to permanent structural 

change in the existing business environments. Today, businesses are gathering and accumulating an 

enormous amount of data: effective goldmines. In this new Gold Rush, the demand for the skills to 

understand, explore, and apply data is accelerating. Computer programmers and data scientists are 

particularly in  high demand, and their tool kit is expanding rapidly. In preparing students for an 

increasingly data-driven world, applied economics programs have an increased role to play through 
teaching data literacy and modern data analytics skills. 

 A good starting point may be to teach relevant tools of data exploration and visualization, also 

known as exploratory data analysis (EDA), that are popular in the field of data science. The exploratory 

nature of EDA contrasts with statistical modeling and hypothesis testing, a long-standing tradition in 

modern economics curriculums. An increasing number of economics courses integrate statistical 

programming in R as an integral topic. Current examples include Microeconomics with R by John 

Humphries at Yale University, Methodology of Economic Research by Jude Bayham at Colorado State 

University, econometrics course materials taught with R by Ed Rubin, Data Science for Economists by Grant 
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McDermott at University of Oregon, and Applied Econometrics by Taro Mieno at University of Nebraskaɀ

Lincoln as far as the authors are aware of. Indeed, the tools of EDA are generally complementary to the 

teaching of analytical skills and thought processes emphasized in applied economics. Teaching EDA tools 

would be not only timely but also stimulating for students who have an interest in learning to use real-

world data on current socioeconomic issues. Hands-on EDA exercises can provide a vital opportunity for 

students to acquire practical data analysis skills beyond the usual exercises in statistics. 

 In this article, we review recent developments in the EDA toolkit in statistical computing freeware 

R. Our intended audience includes course instructors, graduate students, and advanced undergraduate 

students particularly those who are pursuing independent studies, participating in research projects, or 

serving as teaching assistants. We use data sets familiar to agricultural economists for illustration. Our 

contributions are three-fold: we present this new generation of tools with a focus on its syntax structure, 

our examples show how one can use public data of the U.S. Census of Agriculture for data exploration, and 

we highlight the practical value of EDA in handling data, uncovering insights, and communicating key 

aspects of the data. Our review focuses on the tools of the tidyverse  package, a meta package that includes 

ggplot2 and dplyr and uses a streamlined coding syntax across its member packages (Wickham et al. 

2019).1 In writing this article, we borrow core concepts from R for Data Science (Wickham and 

Grolemund 2017). For interested readers, additional resources include ModernDive  (Ismay and Kim 

2019), Data Visualization with R  (Kabacoff 2018), Data Visualization: Practical Introduction  (Healy 

2018) and Geocomputation with R  (Lovelace, Nowosad, and Muenchow 2019).2 All R code used in this 

document is made available in the supplementary appendix.3 

 The rest of the article is organized as follows. We provide a short, general comparison between R 

and Stata, a popular proprietary statistical software among economists. The main contents of our review 

of R tools consist of four sections that (a) introduce core data visualization methods of ggplot2, (b) 

demonstrate the application of data transformation methods of dplyr with U.S. agriculture data, (c) provide 

an analytical example within a data exploration narrative, and (d) briefly describe additional tools. The 
final section concludes the article. 

 

2 Comparison of R and Stata 
As a general comparison, we comment on the relative strengths and weakness of two commonly used 

software programming languages in the field of economics, R and Stata.4 

 

2.1 A Basic Introduction  
R, formally known as R Projects, is a statistical computing, graphics, and programming language that is 

available free of charge. 2 ÉÓ ÎÏÔ ÍÁÎÁÇÅÄ ÂÙ Á ÓÉÎÇÌÅ ÐÅÒÓÏÎ ÏÒ ÃÏÍÐÁÎÙ ÂÕÔ ÉÎÓÔÅÁÄ ÂÙ ÁÎ Ȱ2 ÃÏÒÅ ÇÒÏÕÐȢȱ5 

The R core group has the authority to modify the R source code archive. For most users, it suffices to know 

that R simply executes commands according to programs, or R functions, that are loaded by default and by 

the user. To execute commands beyond basic computations and visualization tasks, R users need to load R 

packages, collections of R functions developed and shared by other R users. Which packages to use depends 

                                                        
1 They are not part of the base package. To install a R package, execute the code in the R console, for example: 
install.packages("tidyverse"). 
2 R for Data Science: https://r4ds.had.co.nz/ , ModernDive: https://moderndive.com/ , Data Visualization with R: 
https://rkabacoff.github.io/datavis/ , Data Visualization A Practical Introduction: http://socviz.co/index.html , Geocomputation 
with R: https://geocompr.robinlo velace.net/. 
3 https://github.com/tmieno2/R -AETR  
4 Software download: https://cloud.r -project.org/  and https://download.stata.com/download/.  
5 https://www.r -project.org/contributors.html . 

https://r4ds.had.co.nz/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
http://socviz.co/index.html
https://geocompr.robinlovelace.net/
https://r4ds.had.co.nz/
https://moderndive.com/
https://rkabacoff.github.io/datavis/
http://socviz.co/index.html
https://geocompr.robinlovelace.net/
https://github.com/tmieno2/R-AETR
https://cloud.r-project.org/
https://www.r-project.org/contributors.html
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on the ÕÓÅÒȭÓ ÏÂÊÅÃÔÉÖÅÓ ÁÎÄ ÐÅÒÓÏÎÁÌ ÐÒÅÆÅÒÅÎÃÅÓȢ &ÏÒ ÅØÁÍÐÌÅȟ Ô×Ï ÐÏÐÕÌÁÒ %$! ÔÏÏÌÂÏØÅÓ ÁÒÅ ÔÈÅ 

tidyverse package, which is our focus in this article, and the data.table package.  

 Stata is a proprietary statistics software from StataCorp. In most universities, students can access 

Stata in their computer labs through a site license. As of December 2019, the Stata perpetual license for 

U.S. students is $225 for Stata/IC (the least powerful version), $425 for Stata/SE, $595 for Stata/MP 2-core 

(midrange capabilities), and $795 for Stata/MP (the most powerful). Short-term U.S. student licenses are 

also available for $48 for Stata/IC and $125 for Stata/SE for 6 months. StataCorp is responsible for software 

descriptions, updates, and additions of Stata commands. Separately, some user-contributed Stata packages, 

a collection of Stata ado files, are available through RePEc (which stands for Research Papers in 

Economics). Also, StataCorp maintains a quarterly publication of the Stata journal for user-contributed 

statistical techniques and effective teaching methods using Stata. 

 

2.2 Statistical Capability  
R is open-source software with a rapidly expanding toolkit built by the R user community across diverse 

fields of statistics and sciences. The R toolkit includes advanced tools of machine learning, Bayesian 

statistics, and spatial statistics that are of interest to many economists, as well as statistical tools in other 

disciplines like biostatistics that may help economists working on interdisciplinary research. R offers rich 

tools in some fields of econometrics, including, for example, linear or quadratic programming (Rglpk and 

ipotr  packages), nonlinear optimization (nloptr  package), and advanced quantile regression analyses 

(quantreg, quantreg.nonpar, and bayesQR packages). 

 3ÔÁÔÁȭÓ ÄÅÖÅÌÏÐÍÅÎÔ ÏÆ ÎÅ× ÔÏÏÌÓ ÐÒÉÍÁÒÉÌÙ ÒÅÓÔÓ ÏÎ 3ÔÁÔÁ#ÏÒÐȭÓ ÕÎÄÅÒÔÁËÉÎÇȢ 'ÉÖÅÎ ÉÔÓ ÌÉÍÉÔÅÄ 

resources, the company focuses on tools for social scientists, including economists. For instance, Stata 

offers a variety of estimation options for state-of-the-art treatment effects and panel data estimation 

techniques that are useful to economists. Advanced coding implementation of customized nonlinear 

estimation is also available.6 The documentation of various commands in Stata is consistently managed by 

the company and hence user-friendly; in contrast the user-contributed projects of R may lack consistent 

documentation or transferable command syntaxes across various packages. Thus, a familiarity with both 

R and Stata would give the user access to a wide range of statistical methods, some of which may be 

available in one software but not in the other. 

 

2.3 Machine Learning Methods  

There is a growing interest in R among agricultural economists, and it can be explained by the increased 

importance of Big Data and the expanding capabilities of machine learning methods (Coble et al. 2018; 

Storm, Baylis, and Heckelei 2019). Numerous packages that implement state-of-the-art machine learning 

methods are available in R, including LASSO, Random Forest, Neural Network, and Boosted Regression. 

The keras and tensorflow packages handle Convolutional Neural Network (CNN), a workhorse for image 

processing used in facial recognition and autonomous driving. An interesting application of CNN may 

include spatial data analysis (Storm, Baylis, and Heckelei 2019). The rnn package allows for recurrent 

neural network modeling, which is particularly suitable for state-dependent time-series analysis and a 

certain type of price analysis. The grf package leads the generalized random forest framework, which 

includes causal forest, quantile forest, and instrumental forest developed by Athey, Tibshirani, and Wager 

                                                        
6 https://blo g.stata.com/2016/01/26/programming -an-estimation-command-in-stata-a-review-of-nonlinear-optimization-
using-mata/   

https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
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(2019). The XGBoost package offers extreme gradient boosting regression, which has been shown to 

outperform other machine learning methods in many applications.  

 In the latest version of Stata 16, StataCorp has introduced LASSO commands. In addition, user-

contributed packages such as LASSOPACK (LASSO, elastic net, and ridge regressions), RFOREST (random 

forest classification and regression), and KFOLDCLASS (K-fold cross-validation for binary outcomes) are 
available. It is plausible that many machine learning algorithms will be gradually made available.   

  

2.4 Spatial Data Handling  
Many data analyses in agricultural economics involve spatial considerations. R offers an extensive 

capability in processing spatial data (sp, sf, raster, rgdal, and rgeos packages are some examples) and 

creating geographical maps (ggplot2 and tmap packages have wide use). If for instance, one is interested 

in understanding the impact of climate on cropping patterns at the sub-county level, he or she could 

combine the Cropland Data Layer (CDL) files and the county boundaries data to summarize a mixture of 

cropping patterns for each county, all of which can be done within R without having to use specialized 

programs such as ArcGIS or QGIS.7 In contrast, Stata has a very limited capability for handling spatial data 

or generating geographic data figures. One exception may be the user-contributed mapping commands like 

spmap and maptile.  

 

2.5 Publicly Available Data  
Recent developments in R include packages that are dedicated specifically for downloading publicly 

accessible data. One can download data from the USDA NASS CDL (cdlTools package), USGS and EPA 

hydrologic and water quality data (dataRetrieval), Quick Stats (rnassqs package), PRISM (prism package), 

Daymet (daymetr package), Sentinel-2 satellite imagery data (sen2r package), the National Elevation Data 

Set digital elevation models, the NCSS Soil Survey Geographic data set, and many others (FedData package). 

These R packages can automate the process of manually downloading individual public data files. 

Additionally, the httr  package allows for data requests via Application Programming Interface (API), and 

the jsonlite package helps process JSON data files that are common in API outputs. Stata has a capability to 

utilize API through the winexec curl command. Also, downloaded data in XML or JSON format can be 

imported into Stata via xmluse or insheetjson, respectively. 

 

3 Data Visualization with ggplot2  
4ÈÉÓ ÓÅÃÔÉÏÎ ÈÉÇÈÌÉÇÈÔÓ ÓÉÍÐÌÅ ÄÁÔÁ ÖÉÓÕÁÌÉÚÁÔÉÏÎ ÍÅÔÈÏÄÓ ×ÉÔÈ 2ȭÓ ggplot2 package for creating scatter, 

line, and bar plots.8 The ggplot2 syntax has three essential components for generating data plots: data, aes, 
and geom. It implements the following philosophy: 

 

A statistical graphic is a mapping of data  variables to aesthetic attributes of geometric  objects. 
(Wilkinson 2005, p. 42) 

 

where the data, aesthetic attributes, and geometric objects are programmed as follows: 

Ɇ data: a data frame; e.g., the first argument in ggplot(data, ...). 

                                                        
7 For example, see R as GIS for Economists: https://tmieno2.github.io/R -as-GIS-for-Economists/.  
8 For basic R tutorials, try http://www.cookbook -r.com/  or https://en.wikibooks.org/wiki/R_Programming/Sample_Session. A 
useful material for teaching may be https://psyteachr.github.io/ .  

https://tmieno2.github.io/R-as-GIS-for-Economists/
http://www.cookbook-r.com/
https://en.wikibooks.org/wiki/R_Programming/Sample_Session
https://psyteachr.github.io/
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Ɇ aes: x and y variables specifying the horizontal and vertical axes and other variables by which data can 
appear in different colors, shapes, sizes, etc.; e.g., aes(x = var_x, y = var_y, color = var_z). 

Ɇ geom: geometric objects such as points, lines, bars, etc.; e.g., geom_point(), geom_line(), geom_bar(), 
geom_histogram(). 

This simple philosophy provides an easy way for remembering how to relate the three components with 
ÅÁÃÈ ÏÔÈÅÒ ÉÎ ÃÏÄÉÎÇȢ .ÏÔÅ ÔÈÁÔ ÄÁÔÁ ÓÅÔÓ ÁÒÅ ÏÆÔÅÎ ÒÅÆÅÒÒÅÄ ÔÏ ÁÓ ÄÁÔÁ ÆÒÁÍÅÓȟ ÃÏÒÒÅÓÐÏÎÄÉÎÇ ÔÏ 2ȭÓ 
data.frame class objects that, unlike matrix class objects, can contain both string and numeric variables in 
columns. 
 We now examine some basic examples. The following code produces scatterplots of horsepower 
and miles per gallon using the mtcars data set, a sample data set automatically loaded in base R (Figure 1). 
It came from the 1974 Motor Trend U.S. magazine and contains 11 automobile specification attributes for 
32 cars, including attributes like gross horsepower (hp), miles per gallon (mpg), number of cylinders (cyl), 
automatic transmission indicator (am), and weight in 1,000 of pounds (wt).9  

  
 

 
 

Figure 1. Example of Scatterplots Using the mtcars Data Set in Base R 

 

)Î ÔÈÅ ÎÅØÔ ÅØÁÍÐÌÅȟ ×Å ÁÄÄ ÍÏÒÅ ÌÁÙÅÒÓ ÏÆ ÇÅÏÍÅÔÒÉÃ ÏÂÊÅÃÔÓȟ ÓÅÅ ÂÕÌÌÅÔ ÐÏÉÎÔ ȰÇÅÏÍȱ ÁÂÏÖÅ ɉ&ÉÇÕÒÅ 

2). By default, a geometric object inherits the aesthetic attributes specified in gglot(data, aes()). To change 

those attributes, one needs to provide specific attributes for each geometric object. In the first two plots, 

note that the presence or absence of a color attribute specification in ggplot(data, aes()), which implies 

different color attribute specifications in geom_smooth(). The third plot contains an example of fixed 

aesthetic attributes like color and point size that are specified outside aes() and hence do not depend on 

                                                        
9 While unrelated to agriculture, this data set is commonly used for basic R tutorials and hence good to be familiar with.  

# scatterplot of hp and mpg  

ggplot (mtcars, mapping =  aes( x = hp, y = mpg)) + 
  geom_point ()  
 

# convert variable cylinder into a categorical variable  

mtcars $cyl  <-  as.factor (mtcars $cyl)  
 

# scatterplot with added color and shape by cylinder  

ggplot (mtcars, mapping =  aes( x = hp, y = mpg, color = cyl)) + 

  geom_point ( aes( shape =  cyl))  
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the data. Also, one can add a geometric object with a new data set. For example, the third plot contains a 

geometric object based on a subset of the data.  

 

 

 

 
 

Figure 2 . Example of Scatterplots with Linear Model and Smooth Fits Using the mtcars Data  
 

# add a layer of linear regression model fit for each cylinder type  

ggplot (mtcars, aes( x = hp, y = mpg, color =  cyl)) + 

  geom_point ( aes( shape =  cyl)) + 

  geom_smooth( method =  lm)  
 

# add a layer of smooth regression fit (locally estimated scatterplot  
smoothing: loess) across all cylinder types  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 
  geom_smooth()  
 

# add a layer of large yellow dots to indicate automatic transmission   

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( data =  filter (mtcars, am == 0), color =  "yellow" , size =  5) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 
  geom_smooth()  
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Additionally, a facet_wrap() or facet_grid() layer splits the data into subsets by a categorical variable(s) and 

generates multiple data plots on those subsets (Figure 3). 

 

 

 

 
 

Figure 3 . Example of Scatterplots for Subsets of the mtcars Data  
Note: The data are split into two subsets by transmission type (top) and six subsets by the combination of transmission type 

and number of cylinders (bottom). Variables mpg, hp, and cyl refer to miles per gallon, horse power, and the number of cylinders, 

respectively.  

  

Various cosmetic adjustments can be controlled through additional layers of coordinate attributes 

(scale and coord) and other graphics attributes (labs, theme, and guides) as demonstrated in Figure 4. 

 

 

 

 

 

 

 

 

 

# add a character variable for transimission type  

mtcars $am_char < -  recode ( c(mtcars $am), "0"  = "automatic" , "1"  = "manual" )  
 

# plot subsets of data by transmission type  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) +  

  facet_wrap ( ~ am_char)  
 

#  plot subsets of data by transmission type and number of gears  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) +  

  facet_grid (gear ~ am_char)  
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Figure 4 . Example of Scatterplots Using the mtcars Data with Cosmetic Adjustments  
Notes: (A) Specified breaks on the y axis, (B) log-scaled axes, (C) added axis labels and a black-and-white theme, and (D) 
enhanced legend keys. 

# change the displayed values on the y axis  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 

  scale_y_continuous ( breaks =  seq( 10, 36, by =  4))  
 

# map in log10 scale  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 

  scale_x_log10 () + scale_y_log10 ()  
 

# change theme to black and white and overwrite axis labels  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 

  theme_bw() + labs ( x = "Horse power" , y = "Miles per gallon" )  
 

# overwrite the *joint legend* for color and shape attributes  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 
  guides (  

    color =  guide_legend ( title = "cylinder" , override.aes =  list ( size =  4)) ,  

    shape =  guide_legend ( title = "cylinder" , override.aes =  list ( size =  4))  
    )  

A B 
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 The next set of figures provides examples of adding a data label layer (Figure 5) and examples of 

histograms and bar plots (Figure 6). 

 

 

 
 

Figure 5. Example of Plots Using the mtcars Data with Selected Data-Point Labels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mtcars $car_model < -  rownames(mtcars)  
 

# add labels of car model for cars that have either hp > 200 or mpg > 25  

ggplot (mtcars, aes( x = hp, y = mpg)) + 

  geom_point ( aes( shape =  cyl, color =  cyl)) + 

  ggrepel :: geom_label_repel ( aes( label =  car_model),  

                            data =  filter (mtcars, hp > 200 |  mpg > 25))  
 

# example of boxplot  

ggplot (mtcars, aes( x = am_char, y = wt)) + 

  geom_boxplot () +  

  geom_label_repel ( aes( label =  car_model),  

                   data =  filter (mtcars, wt > 4.5  |  wt < 3, am == 0))  



 

Page | 38 Volume 2, Issue 3, June 2020 
 

 

 

 
 

Figure 6 . Example of Histograms (Classic Compound Bars and a Line Plot Style) and Bar Plots 
(Three Examples) Using the mtcars Data  

# examples of histograms   

ggplot (mtcars, aes( x = wt, fill =  am_char)) +  

  geom_histogram ( binwidth =  .75 )  
 

ggplot (mtcars, aes( x = wt, color =  am_char)) +  

  geom_freqpoly ( binwidth =  .75 , position= "dodge" , size =  2)  

 
# examples of barplots  

ggplot (mtcars, aes( x = cyl, fill =  am_char)) + geom_bar()  

ggplot (mtcars, aes( x = cyl, fill =  am_char)) + geom_bar( position =  "dodge" )  

ggplot (mtcars, aes( x = cyl, fill =  am_char)) + geom_bar( position =  "fill" ) + labs( y = "fract
ion" )  



 

Page | 39 Volume 2, Issue 3, June 2020 
 

 
Variables wt, cyl, and am_char refer to weight, the number of cylinders, and transmission type, respectively.  
 

4 Data Exploration with dplyr  
This section reviews essential functions for transforming data with dplyr  and uses U.S. agriculture data for 

a demonstration of EDA that includes querying data, applying geospatial visualizations, and visual 

presentations of data summaries. Before we begin, let us note why exploring data is important and why 

tools of data transformation matter. Most statistical tools allow us to transform a data set by creating new 

variables, selecting specific subsets, sorting or grouping data, collapsing data into group-level statistics, or 

any sequential combination of those operations. And perhaps when combined with some data 

visualization, often by chance, the transformed data set may reveal new aspects of the data. 

 While curiosity-based exploration may seem like a luxury, it is necessary if we want to understand 

the data and discover the insights it provides. Only after a particular combination of data transformations, 

may certain aspects of the data be revealed or become noticeable. That should prompt subsequent 

ÑÕÅÓÔÉÏÎÓ ÌÉËÅȟ Ȱ(Ï× ÄÏ ×Å ËÎÏ× ×ÈÉÃÈ ÄÁÔÁ ÔÒÁÎÓÆÏÒÍÁÔÉÏÎÓ ÔÏ ÐÅÒÆÏÒÍȩȱ ÏÒ Ȱ(Ïw can we tell whether 

×Å ÈÁÖÅ ÕÎÃÏÖÅÒÅÄ ÁÌÌ ÐÏÓÓÉÂÌÅ ÉÎÔÅÒÅÓÔÉÎÇ ÁÓÐÅÃÔÓ ÏÆ ÔÈÅ ÄÁÔÁȩȱ ! ÓÉÍÐÌÅ ÁÎÓ×ÅÒ ÔÏ ÂÏÔÈ ÑÕÅÓÔÉÏÎÓ ÉÓȟ Ȱ7Å 

ÄÏÎȭÔȟ ÂÕÔ ×Å ÓÈÏÕÌÄ ÔÒÙ ÏÕÒ ÂÅÓÔȢȱ 4ÈÉÓ ÉÓ ÐÒÅÃÉÓÅÌÙ ×ÈÙ ÔÈÅ ÔÏÏÌÓ ÏÆ %$! ÍÁÔÔÅÒȢ 4ÈÅ ÅÁÓÉÅÒ ÁÎÄ ÔÈÅ ÓÉÍÐÌÅÒ 

the tools are, the more frequently we use them and the more thoroughly we explore the data. The power 

of data visualization is multiplied by the ability and agility to transform the data at hand. 

The tools of the dplyr package enable us to act nimbly, explore, and understand the data. That can make us 

feel like we are interacting with the data rather than merely transforming it. Before discussing why that 

may be the case, let us introduce the core R functions in the dplyr package: 

Ɇ filter() : extracts rows (observations) by logical vectors. 
Ɇ select(): extracts columns (variables) by column names. 
Ɇ group_by(): assigns rows into groups by column names. 
Ɇ mutate(): creates new variables in a data frame. 
Ɇ summarise(): collapses a data frame into summary statistics. 
Ɇ arrange(): sorts row ordering based on column names. 

These function names are self-descriptive: filter() makes a subset of the data set by extracting rows that 

meet specified conditions; select() extracts selected variables; group_by() creates a grouped data frame, 

which enables subsequent computations in mutate() and summarise() to be performed within each group; 

mutate() creates new variables through direct arithmetic operations of existing variables, canned 

functions, and user-defined functions; summarise() transforms a data set into statistics through canned 

functions or user-defined functions; and arrange() sorts the row order of the data set. These functions can 

be combined in any order to accomplish a desired data transformation. For example, one can extract a 

subset of the data by filter(), set groups by group_by(), compute summary statistics by summarise(), and 
use arrange() to sort the results.  

 Table 1 provides a comparison of these functions with the corresponding commands in Stata. Most 

applied economists would be very familiar with these data transformations, which is a helpful set of tools 

for getting started with dplyr. Here, we offer three reasons for why these dplyr functions can be perceived 

as more powerful than the corresponding functions in other programs such as Stata. 

 First, the dplyr functions are designed to be sequentially combined via a pipe operator (%>%), which 

makes the sequencing very smooth and natural to code. Each of the functions above takes a data frame 

object in the first argument and returns a data frame object, and this allows for piping, that is, applying 

functions sequentially by passing the output of one function into the first argument of the next. For 
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           Table 1. Comparable Data Transformation Commands between R and Stata  

 
 

example, func3(func2(func1(data,...), ...), ...) can be rewritten as data %>% func1(...) %>% func2(...) %>% 

func3(...). Piping makes R code more readable and breaks down a complex data manipulation into a 

sequence of simple steps. Notably, we can read a sequence of operations in plain English by substituting 

the %>% symbol with then. For example, start with the data, then apply func1(...), then func2(...), and then 

func3(..). This makes data exploration approachable (the user has an intuitive framework for coding the 

first few functions), expandable (functions are easy to add on), and even rewarding (the resulting code can 

accomplish complex data transformations). 

 Second, the simplicity in needing to remember just six functions is empowering for the user. These 

functions condense the essence of data transformations needed for exploring data. Remembering these 

functions and piping them allows us to perform a myriad of data transformations without dedicating much 

brain power to formulating the coding instructions. 

 4ÈÉÒÄȟ 2ȭÓ ÄÁÔÁ ÍÁÎÁÇÅÍÅÎÔ ÅÎÖÉÒÏÎÍÅÎÔ ÉÓ ÃÏÎÄÕÃÉÖÅ ÔÏ ÐÅÒÆÏÒÍÉÎÇ Á ÓÅÒÉÅÓ ÏÆ ÄÁÔÁ 

transformation and visualization tasks without any commitment to altering the working copy of the data 

set. R separately handles the task of transforming data from the task of saving the transformed data under 

a given name. Piping allows us to execute a series of data tasks without needing to overwrite the working 

data set. When it is desirable to save transformed data (e.g., creating different data summaries or using 

them in subsequent calculations), it is straightforward to keep multiple data sets in the working 

environment (i.e., just give new names to outputs). 

With those six commands presented above, we can approach data exploration through iterative trials of 

data transformations and visualizations through extracting subsets, grouping, sorting, generating 

variables, and computing data summaries. Each iteration, sparked by an inquisitive hypothesis, offers the 

potential to reveal new aspects of the data. The interesting data patterns, correlations, anomalies, and 

outliers revealed in one inquiry can lead to another line of inquiry. By allowing improvisations through 

EDA, we create a sense of interaction with the data. After repeated use, these tools in R can give one an 

increased sense of confidence and control to explore the data at hand. 

 

4.1 Farm Data 
We now move to our demonstrations with real data. In the rest of the section, we examine the U.S. Census 

of Agriculture (2017),10 for which various summary data are publicly available at the country, state, and 

                                                        
10 Available at https://www.nass.usda.gov/Publications/AgCensus/2017/index.php  and also in the supplementary appendix. 

https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php
https://www.nass.usda.gov/Publications/AgCensus/2017/index.php


 

Page | 41 Volume 2, Issue 3, June 2020 
 

county levels. For convenience, the downloaded data set is separated into a national-level data set us17, 

state-level data set state17, and county-level data set county17. For us17, specifying some variables by 
select() and printing the first five rows yields: 

 

Note that the national level data set alone contains over 80,000 rows. The state or county level data set will 

contain far more rows of data. To identify a variable of interest in a large data set like this, it is essential to 

have some understanding of its data structure. Two useful approaches here are to (1) become familiar with 

Quick Stats 2.0,11 with which these data sets are consistently organized and (2) scan through published 

census of agriculture tables for its contents and organization.  

 Suppose that we are interested in the prevalence of small (those farms with less than $100,000 of 

sales) and nonsmall farms (for the sake of discussion, say, farms with greater than $100,000). The 

information needed for this is found in Table 2 of the U.S. and state census tables. We can extract the 

relevant information by specifying the table number in filter()  and inspecting unique entries in the Item 

column: 

 

 

The information we need is a cross tabulation between the Item ÂÅÉÎÇ Ȱ#/--/$)49 4/4!,3ɂ

/0%2!4)/.3 7)4( 3!,%3ȱ ÁÎÄ ÔÈÅ Class, two variables that contain the number of farms and the 

information about farm sales class. We use filter()  to pinpoint the data we are seeking. 

 

 

                                                        
11 Accessible at https:// quickstats.nass.usda.gov/.  

us17 %>% select (census_table , Sector, Commodity, Item, geog_level, Value) %>% print ( n=5)  
## # A tibble: 82,025 x 6  
##   census_table Sector  Commodity   Item                   geog_level  Value  
##          <dbl> <chr>   <chr>       <chr>                  <chr>       <dbl>  
## 1            ʦ %#/./-ƛ &!2- /0%2!ƛ &!2- /0%2!4)/.3 -  .5-ƛ .!4)/.!,   ʧƚʣʩÅʫ 
ʢʢ ʧ            ʦ %#/./-ƛ &!2- /0%2!ƛ &!2- /0%2!4)/.3 -  !#2ƛ .!4)/.!,   ʮƚʣʣÅʭ 
ʢʢ ʨ            ʦ %#/./-ƛ &!2- /0%2!ƛ &!2- /0%2!4)/.3 -  !2%ƛ .!4)/.!,   ʩƚʩʦÅʧ 
ʢʢ ʩ            ʦ %#/./-ƛ !' ,!.$     !' ,!.$Ɨ ).#, "5),$).ƛ .!4)/.!,   ʦƚʨʦÅʫ 
ʢʢ ʪ            ʦ %#/./-ƛ !' ,!.$     !' ,!.$Ɨ ).#, "5),$).ƛ .!4)/.!,   ʧƚʮʭÅʨ 
ʢʢ ʢ ƛ ×ÉÔÈ ʭƚʧʣʧÅ˩ʣʩ ÍÏÒÅ ÒÏ×Ó 

# find the relevant Item  

us17 %>% filter (census_table == 2) %>% 
  select (Item) %>% unique ()  
## # A tibble: 144 x 1  
##    Item                                                         
##    <chr>                                                        
##  1 COMMODITY TOTALS -  OPERATIONS WITH SALES                     
##  2 COMMODITY TOTALS -  SALES, MEASURED IN PCT OF FARM OPERATIONS 
##  3 COMMODITY TOTALS -  SALES, MEASURED IN $                      
##  4 COMMODITY TOTALS -  SALES, MEASURED IN PCT OF FARM SALES      
##  5 COMMODITY TOTALS -  SALES, MEASURED IN $ / OPERATION          
##  6 CROP TOTALS -  OPERATIONS WITH SALES                          
##  7 CROP TOTALS -  SALES, MEASURED IN PCT OF FARM OPERATIONS      
##  8 CROP TOTALS -  SALES, MEASURED IN $                           
##  9 CROP TOTALS -  SALES, MEASURED IN PCT OF FARM SALES           
## 10 GRAIN -  OPERATIONS WITH SALES                                
ʢʢ ʢ ƛ ×ÉÔÈ ʦʨʩ ÍÏÒÅ ÒÏ×Ó 

https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
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Note that the national data set provides the aggregate record for the sales class of $5,000,000 or more as 

the most detailed information on larger farms. If similar operations are applied to the state or county level 

data, one would find that all sales classes above $1,000,000 and above $500,000 are aggregated, 

respectively. 

 ,ÅÔȭÓ ÔÕÒÎ ÔÏ ÃÏÕÎÔÙ-level data. By continuing on the previous example, suppose that we want to 

count farms by a binary sales-class consisting of small farms (label S) versus not-small farms (label NS) at 

the county level. We do this by selecting relevant data, creating a new class variable (by comparing the 

sales class in the data to user-defined reference class_S that contains a vector of class names for those under 

$100,000 in sales), and summarizing the number of farms by county and the binary sales-class: 

 

 

 

 

 

 

 

 

 

 

 

 

# find the relevant Item and Class  

farm_class_US < -  us17 %>% 
    filter (  

      census_table == 2,  

      grepl ( "COMMODITY TOTALS -  OPERATIONS WITH SALES", Item),  

      ! is.na (Class)  

    ) %>% select (Class, Value)  
 
farm_class_US  
## # A tibble: 16 x 2  
##    Class                                   Value  
##    <chr>                                   <dbl>  
##  1  FARM SALES: (LESS THAN 1,000 $)        603752  
##  2 FARM SALES: (1,000 TO 2,499 $)         187949  
##  3 FARM SALES: (2,500 TO 4,999 $)         185341  
##  4 FARM SALES: (5,000 TO 9,999 $)         208074  
##  5 FARM SALES: (10,000 TO 19,999 $)       174780  
##  6 FARM SALES: (20,000 TO 24,999 $)        53438  
##  7 FARM SALES: (25,000 TO 39,999 $)       100490  
##  8 FARM SALES: (40,000 TO 49,999 $)        43623  
##  9 FARM SALES: (50,000 TO 99,999 $)       119434  
## 10 FARM SALES: (100,000 TO 249,999 $)     1309 32 
## 11 FARM SALES: (250,000 TO 499,999 $)      87839  
## 12 FARM SALES: (500,000 TO 999,999 $)      69703  
## 13 FARM SALES: (1,000,000 OR MORE $)       76865  
## 14 FARM SALES: (1,000,000 TO 2,499,999 $)  53611  
## 15 FARM SALES: (2,500,000 TO 4,999,999 $)  14366 
## 16 FARM SALES: (5,000,000 OR MORE $)        8888  
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When we compare where small (S) and nonsmall farms (NS) are numerous, the two lists of top counties 

are not geographically overlapping for these two farm classes. Summing up the number of farms within 
each binary sales class yields: 

 

 

 

 

 

farms < -  county17 %>% 
  filter (  

    census_table == 2,  

    grepl ( "COMMODITY TOTALS -  OPERATIONS WITH SALES", Item),  

    ! is.na (Class), Co_name != "NULL" 

    ) %>% 
 

  # create a new variable indicating sales < $100k  

  mutate ( class_S_NS =  ifelse (Class %in% class_S, "S" , "NS" )) %>% 
  group_by (St_code, St_name, Co_code, Co_name, class_S_NS) %>% 
  summarise( Value =  sum(Value, na.rm = T))  
 

# show the top 10 county for the numbers of small farms  

farms %>% filter (class_S_NS =="S" ) %>% arrange ( desc(Value)) %>% head( n = 10)  
## # A tibble: 10 x 6  
## # Groups:   St_code, St_name, Co_code, Co_name [10]  
##    St_code  St_name Co_code Co_name   class_S_NS Value  
##    <chr>   <chr>   <chr>   <chr>     <chr>      <dbl>  
##  1 04      AZ      001     APACHE    S           5529  
##  2 06      CA      073     SAN DIEGO S           4571  
##  3 48      TX      367     PARKER    S            4521 
##  4 04      AZ      017     NAVAJO    S           4181  
##  5 48      TX      231     HUNT      S           4040  
##  6 41      OR      005     CLACKAMAS S           4013  
##  7 15      HI      001     HAWAII    S           3929  
##  8 12      FL      083     MARION    S           3776  
##  9 48      TX      497     WISE      S           3610  
## 10 08      CO      123     WELD      S           3407  

 
# show the top 10 county for the numbers of non - small farms  

farms %>% filter (class_S_NS == "NS" ) %>% arrange ( desc(Value)) %>% head( n = 10)  
## # A tibble: 10 x 6  
## # Groups:   St_code, St_name, Co_code, Co_name [10]  
##    St_code St_name Co_code Co_name     class_S_NS Value  
##    <chr>   <chr>   <chr>   <chr>       <chr>      <dbl>  
##  1 42      PA      071     LANCASTER   NS          2382  
##  2 06      CA      019     FRESNO      NS          2240  
##  3 06      CA      107     TULARE      NS          1800  
##  4 06      CA      077     SAN JOAQUIN NS          1414  
##  5 06      CA      099     STANISL AUS  NS          1305  
##  6 06      CA      047     MERCED      NS          1100  
##  7 27      MN      145     STEARNS     NS          1091  
##  8 19      IA      167     SIOUX       NS          1070  
##  9 06      CA      097     SONOMA      NS           84 9 
## 10 55      WI      043     GRANT       NS           828  
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Of the 2 million farms for which the census gathered data, roughly 1.68 million farms (82 percent) had less 

than $100,000 in revenues. The USDA defines a ÆÁÒÍ ÔÏ ÂÅ ȰÁÎÙ ÐÌÁÃÅ ÆÒÏÍ ×ÈÉÃÈ Αρȟπππ ÏÒ ÍÏÒÅ ÏÆ 

ÁÇÒÉÃÕÌÔÕÒÁÌ ÐÒÏÄÕÃÔÓ ×ÅÒÅ ÐÒÏÄÕÃÅÄ ÁÎÄ ÓÏÌÄȟ ÏÒ ÎÏÒÍÁÌÌÙ ×ÏÕÌÄ ÈÁÖÅ ÂÅÅÎ ÓÏÌÄȟ ÄÕÒÉÎÇ ÔÈÅ ÃÅÎÓÕÓ ÙÅÁÒȱ 

ɉ/ȭ$ÏÎÏÇÈÕÅ ÅÔ ÁÌȢ ςππωɊȢ )Î ÆÁÃÔȟ ÏÖÅÒ φππȟπππ ÆÁÒÍÓ ÄÏ ÎÏÔ ÈÁÖÅ ÓÁÌÅÓ ÁÂÏÖÅ Αρȟπππ ÉÎ ςπρχȟ ÁÓ ÓÈÏ×n in 

the first summary farm_class_US above. Although the definition of farms in USDA statistics has been 

ÄÅÂÁÔÅÄ ÐÒÅÖÉÏÕÓÌÙȟ ÎÏ ÃÈÁÎÇÅ ÈÁÓ ÂÅÅÎ ÍÁÄÅ ɉ/ȭ$ÏÎÏÇÈÕÅ ÅÔ ÁÌȢ ςππωɊȢ  

 One strength of R for agricultural data analysis is to be able to produce geographical representations 

of data. With county-level data paired with the state-county Federal Information Processing Standards 

(FIPS) codes, it is straightforward to project the data on maps. For instance, the following sample code 

shows how variable var1 in data set data can be mapped at the county level: 

 

 

Here, geo_county contains the geometry data of U.S. county boundaries (which can be replicated by 

downloading any county-level information of the American Community Survey with tidycensus package). 

Layer geom_sf() handles the geometry aesthetic and here supplies a layer that fills county shapes with 

different colors depending on the value of var1. Additional layers coord_sf(datum = NA) and 

theme_minimal() instruct how to remove data plot graphics like axes and data plot area, giving a clean finish 

to the map output. Figures 7 and 8 provide examples of mapping the farm distributions using the binary 
revenue-class variable defined above.  

# total number of farms by class  

farms %>% group_by (class_S _NS) %>% 
  summarise( subtotal =  sum(Value, na.rm = T)) %>% 
  ungroup () %>%  

  mutate ( total =  sum(subtotal, na.rm = T),  

         fraction =  round (subtotal / total, 2))  
## # A tibble: 2 x 4  
##   class_S_NS subtotal   total fraction  
##   <chr>         <dbl>   <dbl>    <dbl>  
## 1 NS           365339 2042220     0.18  
## 2 S           1676881 2042220     0.82  

# merge county level data with geographic data and generate a color - coded map  

left_join (geo_county, data,  by = c( "GEOID" = "FIPS" )) %>%  

    ggplot () +  

    geom_sf( aes( fill =  var1)) + 

    coord_sf ( datum =  NA) + theme_minimal ()  
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Figure 7 . Map of Farm Counts Using the Binary Sales-Revenue Class in the 2017 U.S. Census of 
Agriculture  

 

The first map shows the distribution of farms with sales less than $100,000, and the second map shows the 

distribution of farms with sales above $100,000.  

 In addition to the raw farm counts, the next map considers the relative prevalence of the small and 

nonsmall farms (Figure 8). This approach may more clearly highlight the geographic concentrations of 

farms in different farm-size classes across counties, especially in terms of how the concept of a farm (i.e., 

the revenue size of active farming and what meets the criteria for being considered a farm in the U.S. Census 

of Agriculture database) systematically varies across geography. 
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Figure 8 . Map of Relative Farm Counts Using the Binary Sales-Revenue Classes in the 2017 U.S. 
Census of Agriculture  

 

The two maps show the relative frequency of farms with sales below $100,000 (first), and the farms with 

sales above $100,000 (second). 

 Next we turn to differences across major farming industries. Suppose that we want to see how the 

concept of a farm differs across industries. We can examine the distributions of farm numbers and sales 

values this time by industry. In the first example, we show Sankey flow charts (we used the flipPlots 

package; Figures 9 and 10), which illustrate the contributions of different segments of data to the grand 

total like various streams combining into a river. Here, we add an intermediate layer that represents the 

subtotals by farm-sales class. For this purpose, we consider four levels of sales classes; marginal (less than  


