Combining Economics and Science in Benefit/Cost Analysis

Erik Lichtenberg Department of Agricultural and Resource Economics University of Maryland, College Park

Goals of Food Safety Regulation

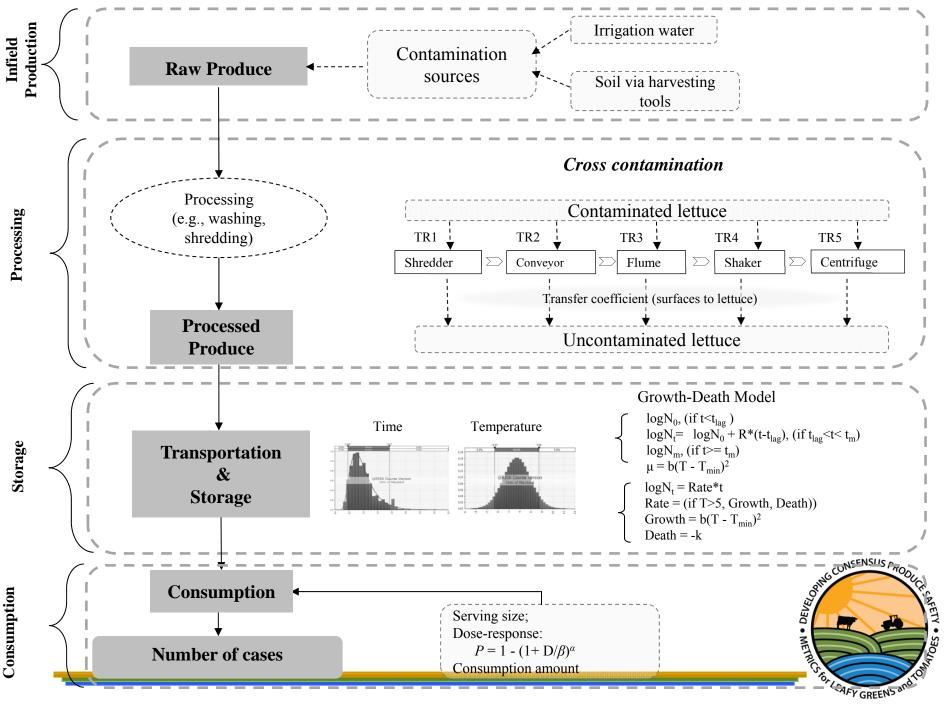
- Achieve acceptable level of risk
- With adequate margin of safety against uncertainty
- At lowest possible cost

Tradeoffs

- How much risk is acceptable? (Complete safety not attainable!)
 - Risk to whom? Population risk vs. risk to random individual or individual from susceptible subpopulation?
- How much extra cost to incur guarding against uncertainty?
- Unintended consequences—do actions we take to mitigate one kind of risk increase risk/damage in other dimensions?

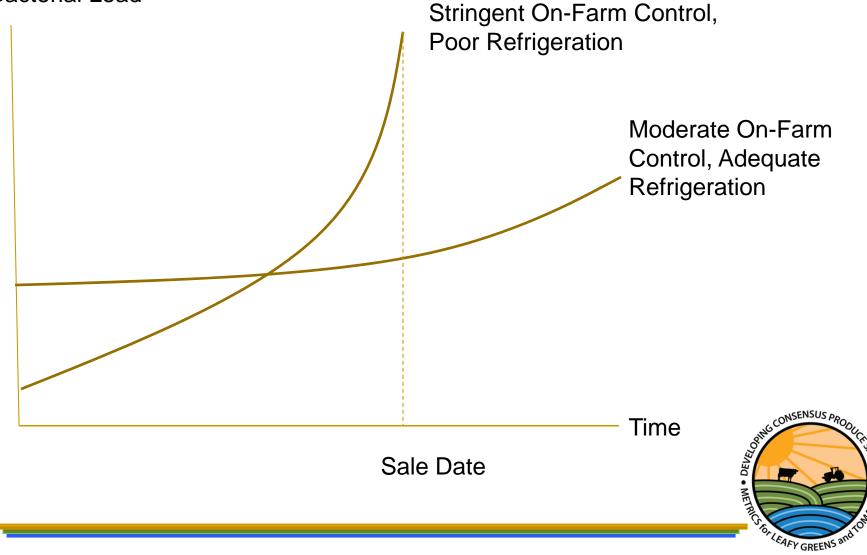
A model of uncertainty-adjusted cost of risk reduction (Lichtenberg and Zilberman)

- Minimize cost of actions aimed at different components of the risk generation process.
- Safety-first constraint specifying acceptable risk, weight on uncertainty about risk.
 - Weight on uncertainty = margin of safety.
- Varying acceptable risk level, margin of safety \rightarrow uncertainty-adjusted cost curve for risk reduction.
- "Optimal" regulation requires comparing uncertaintyadjusted cost with uncertainty-adjusted benefit.
 - Margin of safety needs to be specified as well.


Implications of Cost-Minimizing Policy

- Attractiveness of any regulatory action depends on a combination of 3 factors:
 - Cost of action;
 - Reduction in expected risk;
 - Reduction in uncertainty about risk (which depends on absolute level of uncertainty as well as marginal reduction in uncertainty).
- May be optimal to use a portfolio of policies—some specializing in reducing risk on average, others in reducing uncertainty about risk.

Example: Microbial Contamination of Leafy Greens (Hao and Pradhan, Danyluk and Schaeffer)


Water Testing

- Studies from SCRI Food Safety Metrics:
 - Bacterial survivorship = 1-2 days.
 - Contamination more likely from soil splashed onto surface by rainfall.
- Implication: Frequent irrigation water testing may be very cost-ineffective (low reduction in risk on average and uncertainty about risk).

Tradeoffs and Incentives I

Bacterial Load

Tradeoffs and Incentives II

- Food safety as a team production problem—multiple agents contribute, separate contributions hard to separate.
- Product testing, record-keeping at each stage of supply chain can be used to "break up" the team, apportion liability in case of outbreak—at least to some extent.
- Equivalent to certification as means of mitigating adverse selection, moral hazard problems.

Tradeoffs and Incentives III

- At which stages of the supply chain does testing reveal useful information?
- How accurate does testing need to be—from either perspective?
 - If bacterial loads are low, probability of false negative will be high unless sample size is large.
 - But large sample size may be too punitive economically, especially for small growers.
- How much care should final consumers be required to exercise (moral hazard effect)?

Heterogeneity

- Costs, risk levels may vary among agents.
- Regulatory actions that are cost-effective for some size farms are not cost-effective for others.
- Example: Irrigation water, product testing for large versus small growers.
 - Preliminary results from Mid-Atlantic grower data imply elasticities of scale (crop acres) in testing = 0.43 (leafy greens), 0.80 (tomatoes).
 - Maximum tomato acres = 36X average, testing cost per acre = 49% of average.
 - Maximum leafy green acres = 12.5X average, testing cost per acre = 24% of average.
 - Small growers sell almost everything direct—not team production.
 - Higher costs, lower exposure from small growers \Rightarrow testing requirements likely <u>not</u> to be cost-effective.

Unintended Consequences

- Guarding against intrusion of wildlife

 → elimination of riparian vegetation,
 increase in erosion and elimination
 of habitat.
- Can these effects be foreseen? If so, how should they be incorporated?

Final Thoughts

- Team nature of production, difficulty of separating contributions of different agents make it difficult to harness market forces to ensure adequate food safety.
 - A complication: Victims may also bear some responsibility.
- Need to evaluate tradeoffs between cost, acceptability of risk, aversion to uncertainty.
 - Regulatory actions that have low levels of risk reduction and do little to mitigate uncertainty are likely not cost effective.
 - Cost effective regulations may be more stringent for some than others—not necessarily a level playing field across the supply chain or with a sector (e.g., scale). That may raise political problems.
- Combined economic/scientific analysis (e.g., SCRI Food Safety Metrics project) can help winnow out actions that are strictly dominated. But acceptability of risk, adequacy of margin of safety are social/policy decisions.

